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LMI based control design for linear systems
with distributed time delays

ANNA FILASOVÁ, DANIEL GONTKOVIČ and DUŠAN KROKAVEC

The paper concerns the problem of stabilization of continuous-time linear systems with
distributed time delays. Using extended form of the Lyapunov-Krasovskii functional candidate,
the controller design conditions are derived and formulated with respect to the incidence of
structured matrix variables in the linear matrix inequality formulation. The result give sufficient
condition for stabilization of the system with distributed time delays. It is illustrated with a
numerical example to note reduced conservatism in the system structure.

Key words: linear matrix inequality, systems with distributed time delays, Lyapunov-
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1. Introduction

Control systems are used in many industrial applications, where time delays can take
a deleterious effect on stability and dynamic performance in open and closed-loop sys-
tems. Therefore the stability and control of the dynamical systems involving distributed
time delays is the problem of a great interest and intensive activities are done to develop
control laws for systems stabilization.

The use of Lyapunov method for stability analysis of the time delay systems has been
a growing subject of interest, starting with the pioneering works of Krasovskii [10],
[11]. Currently, for the stability issue, modified Lyapunov-Krasovskii functionals are
used to obtain delay-independent stabilization and the results based on these functionals
are applied to controller synthesis and observer design. This time-delay independent
methodology, and the bounded inequality techniques are sources of a conservatism that
can cause higher norm of the state feedback gain. Much research has been done and
stability criteria have been derived for systems with time-delays in state variables (e.g.
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in [14], [16]), especially formulated with respect to LMI principles ( [1], [5], [9]). Some
review of progress in this research field can be found e.g. in [19], [21].

Systems with distributed time delays were applied e.g. in the modeling of combus-
tion chambers rocket motor with pressure feeding [4], [20]. Because of the significance
of systems with distributed time-delay, as the controllers are usually digitally imple-
mented, a growing attention has been devoted to studying distributed delay systems in
recent years. Reflecting the fact that standard time-delay control design schemes are not
applicable to systems with distributed time delays, new stability conditions had to be
derived (e.g. in [8], [17]). The readers are referred to [3], and the reference therein, for
recent reports about the stability analysis of these systems.

The presented approach bases on the extended form of Lyapunov-Krasovskii func-
tional, established by introducing triple integral terms [18], where the stability conditions
as well as the controller design method are reformulated with respect to the application
of structured matrix variables, and by employing the integral partitioning technique [7].
Ideas in this direction can be found in [2], as well as in the authors preliminary results
published in [5], [13]. Generally, since Lyapunov-Krasovskii functional is used, only
sufficient conditions for system stability are obtained.

The outline of this paper is as follows: section 2 briefly introduces the model of
continuous-time linear MIMO systems with distributed time delays, and in section 3
the basis preliminaries are derived. According to the system model properties, new LMI
structures, specifically designed to respect the structural LMI variables implementation
in LMI solvers, are introduced in section 4 in accordance to stability conditions of the
autonomous system. These conditions form the basis on which the control law parameter
design conditions are derived in section 5. Finally, in section 6 a numerical example
is presented to illustrate basic properties of the presented method. Section 7 presents
concluding remarks.

Throughout the paper, the following notations are used: xxxT , XXXT denote the transpose
of the vector xxx and matrix XXX , respectively, diag[ · ] denotes a block diagonal matrix; a
square matrix XXX > 0 (respectively XXX < 0) means that XXX is a symmetric positive definite
matrix (respectively, negative definite matrix); the symbol IIIn represents the n-th order
unit matrix, R denotes the set of real numbers and Rn×r the set of all n× r real matrices.

2. System model

The systems under consideration are understood as multi-input and multi-output lin-
ear (MIMO) dynamic systems with distributed time delay. Without lose of generaliza-
tion, this class of systems can be represented in the state-space form by the set of equa-
tions

q̇qq(t) = AAAqqq(t)+AAAh

t∫
t−h

qqq(s)ds+BBBuuu(s) (1)
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yyy(t) =CCCqqq(t)+DDDuuu(t) (2)

with initial conditions

qqq(θ) = φ(θ), ∀θ ∈ ⟨−(h+
h
m
),0⟩ (3)

where h > 0 represents the delay, m > 0 is a partitioning factor, qqq(t)∈Rn, uuu(t)∈Rr, and
yyy(t) ∈ Rp are vectors of the state, input and output variables, respectively, and matrices
AAA ∈ Rn×n, AAAh ∈ Rn×n, BBB ∈ Rn×r, CCC ∈ Rp×n, and DDD ∈ Rp×r are real matrices.

Using the linear memoryless state feedback controller

uuu(t) =−KKKqqq(t) (4)

where the matrix KKK ∈Rr×n is the gain matrix, the problem of interest is to design KKK such
that the closed-loop system

q̇qq(t) = (AAA−BBBKKK)qqq(t)+AAAh

t∫
t−h

qqq(s)ds (5)

is asymptotically stable for given h.

3. Basic preliminaries

Assumption 1 The couple (AAA,BBB) is controllable.

Proposition 1 If NNN is a positive definite symmetric matrix, and MMM is a square matrix of
the same dimension then

MMM−T NNNMMM−1 MMM−1 +MMM−T −NNN−1 (6)

Proof Since NNN is positive definite then it yields

(MMM−1−NNN−1)T NNN(MMM−1−NNN−1) 0 (7)

MMM−T NNNMMM−1 −MMM−T −MMM−1 +NNN−1  0 (8)

respectively, and evidently (8) implies (6). This concludes the proof.

Proposition 2 (Schur Complement) Let SSS, QQQ=QQQT , RRR=RRRT , detRRR ̸= 0 are real matrices
of appropriate dimensions, then the next inequalities are equivalent[

QQQ SSS
SSST RRR

]
> 0 ⇔

[
Q−SR−1ST 0

0 R

]
> 0 ⇔ Q−SR−1ST > 0, R > 0 (9)
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Proof (see e.g. [12]) Let the linear matrix inequality takes form[
Q S
ST R

]
> 0 (10)

then using Gauss elimination principle it yields[
I −SR−1

0 I

][
Q S
ST R

][
I 0

−R−1ST I

]
=

[
Q−SR−1ST 0

0 R

]
(11)

Since

det

[
I −SR−1

0 I

]
= 1 (12)

it is evident that this transform doesn’t change positivity of (10), and so (11) implies (9).
This concludes the proof.

Proposition 3 (Symmetric upper-bounds inequalities) Let f (xxx(p)), xxx(p) ∈ Rn, XXX =
XXXT > 0, XXX ∈ Rn×n is a real positive definite and integrable vector function of the form

f (xxx(p)) = xxxT (p)XXXxxx(p) (13)

such that there exist well defined integrations as following

0∫
−c

t∫
t+r

f (xxx(p))dpdr > 0 (14)

t∫
t−c

f (xxx(p))dp > 0 (15)

with c > 0, c ∈ R, t ∈ ⟨0,∞), then

0∫
−c

t∫
t+r

xxxT (p)XXXxxx(p)dpdr  2
c2

0∫
−c

t∫
t+r

xxxT (p)dpdr XXX
0∫

−c

t∫
t+r

xxx(p)dpdr (16)

t∫
t−c

xxxT (p)XXXxxx(p)dp 1
c

t∫
t−c

xxxT (p)dpXXX
t∫

t−c

xxx(p)dp (17)
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Proof (compare e.g. [8], [13]) Using (13) it can be written

xxxT (p)XXXxxx(p)− xxxT (p)XXXxxx(p) = 0 (18)

and according to Schur complement (9) it is true that[
xxxT (p)XXXxxx(p) xxxT (p)

xxx(p) XXX−1

]
= 0 (19)

then the double integration of (19) leads to
0∫

−c

t∫
t+r

xxxT(p)XXXxxx(p)dpdr
0∫

−c

t∫
t+r

xxxT(p)dpdr

0∫
−c

t∫
t+r

xxx(p)dpdr
0∫

−c

t∫
t+r

XXX−1dpdr

 0 (20)

Using the equalities
t∫

t+r

XXX−1dp =−rXXX−1,

0∫
−c

−rXXX−1dr =
c2

2
XXX−1 (21)

inequality (20) can be rewritten as
0∫

−c

t∫
t+r

xxxT(p)XXXxxx(p)dpdr
0∫

−c

t∫
t+r

xxxT(p)dpdr

0∫
−c

t∫
t+r

xxx(p)dpdr c2

2 XXX−1

 0 (22)

It is evident, that (22) implies (16).
Analogously using (19) it yields

t∫
t−c

xxxT(p)XXXxxx(p)dp
t∫

t−c
xxxT(p)dp

t∫
t−c

xxx(p)dp
t∫

t−c
XXX−1dp

 0 (23)

and since
t∫

t−c

XXX−1dp = cXXX−1 (24)

the following is obtained
t∫

t−c
xxxT(p)XXXxxx(p)dp

t∫
t−c

xxxT(p)dp

t∫
t−c

xxx(p)dp cXXX−1

 0 (25)

which implies (17). This concludes the proof.
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4. Stability of the autonomous system

In this section a delay-dependent criterion is presented for asymptotic stability of au-
tonomous (unforced) linear systems with distributed time delays. The formulation bases
on the Lyapunov method and LMI approach with structured matrix variables. Note, that
the structure of a structured matrix variable can by specified only with matrix variables
multiplied by natural numbers.

Theorem 4 The autonomous system of (1) is asymptotically stable if for given h > 0,
m > 0 there exist symmetric positive definite matrices PPP,UUU ,VVV ∈ Rn×n, WWW ∈ Rmn×mn

such that

PPP = PPPT > 0, UUU =UUUT > 0, VVV =VVV T > 0, WWW =WWW T > 0 (26)

PPP◦ = TTT T
A PPPTTTI +TTT T

I PPPTTTA +TTT T
UUUU◦TTTU +TTT T

V VVV ◦TTTV +TTT T
WWWW ◦TTTW < 0 (27)

where

TTTU =

[
aIIIn

a−1IIIn

] IIIn 000
[

000 · · · 000
]

000

000 IIIn

[
000 · · · 000

]
000

 (28)

TTTV =

[
bIIIn

b−1IIIn

] AAA AAAh

[
AAAh · · · AAAh

]
000

a2IIIn −IIIn

[
000 · · · 000

]
000

 (29)

TTTW =

 000w

[
IIImn 000w

]
000w

[
000w IIImn

]
 (30)

a =

√
h
m
, b =

h√
2m

(31)

UUU◦ =

[
UUU

−UUU

]
, VVV ◦ =

[
VVV

−VVV

]
, WWW ◦ =

[
WWW

−WWW

]
(32)

TTTA =
[

AAA AAAh

[
AAAh · · · AAAh

]
000
]

(33)

TTTI =
[

IIIn 000
[

000 · · · 000
]

000
]

(34)

IIIn ∈Rn×n, IIImn ∈Rmn×mn are identity matrices, 000 ∈Rn×n, 000w ∈Rmn×n are zero matrices,
respectively, and UUU◦,VVV ◦ ∈ R2n×2n, WWW ◦ ∈ R2mn×2mn are structured matrix variables.
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Proof (compare [2], [6]) Defining Lyapunov-Krasovskii functional candidate as follows

v(qqq(t)) = qqqT (t)PPPqqq(t)+
t∫

t− h
m

pppT (s)WWW ppp(s)ds+

+
0∫

− h
m

t∫
t+ϑ

qqqT (s)UUUqqq(s)dsdϑ+
0∫

− h
m

0∫
ϑ

t∫
t+λ

q̇qqT(s)VVV q̇qq(s)dsdλdϑ+
(35)

with
pppT(t) =

[
pppT

1(t) pppT
2(t)

]
(36)

pppT
1(t) =

t∫
t− h

m

qqqT(s)ds (37)

pppT
2(t) =

[
t− h

m∫
t− 2h

m

qqqT(s)ds · · ·
t−(m−1) h

m∫
t−h

qqqT(s)ds

]
(38)

and evaluating the derivative of v(qqq(t) along a solution of the autonomous system (1) it
can be obtained

v̇(qqq(t)) = q̇qqT(t)PPPqqq(t)+qqqT(t)PPPq̇qq(t)+ v̇1(qqq(t))+ v̇2(qqq(t))+ v̇3(q̇qq(t)) (39)

where

v̇1(qqq(t)) = d
dt

( t∫
t− h

m

pppT (s)WWW ppp(s)ds
)
=

= pppT(t)WWW ppp(t)− pppT
(
t − h

m

)
WWW ppp

(
t − h

m

) (40)

v̇2(qqq(t)) = d
dt

 0∫
− h

m

{
t∫

t+ϑ
qqqT(s)UUUqqq(s)ds

}
dϑ

=

=
0∫

− h
m

qqqT (t)UUUqqq(t)dϑ−
0∫

− h
m

qqqT (t +ϑ)UUUqqq(t +ϑ)dϑ =

= h
m qqqT (t)UUUqqq(t)−

t∫
t− h

m

qqqT (s)UUUqqq(s)ds

(41)
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v̇3(q̇qq(t)) = d
dt

 0∫
− h

m

0∫
ϑ

{
t∫

t+λ
q̇qqT(s)VVV q̇qq(s)ds

}
dλdϑ

=

=
0∫

− h
m

0∫
ϑ

q̇qqT(t)VVV q̇qq(t)dλdϑ−
0∫

− h
m

0∫
ϑ

q̇qqT(t +λ)VVV q̇qq(t +λ)dλdϑ =

=
0∫

− h
m

−ϑq̇qqT(t)VVV q̇qq(t)dϑ−
0∫

− h
m

t∫
t+ϑ

q̇qqT(s)VVV q̇qq(s)dsdϑ =

= 1
2

( h
m

)2
q̇qqT(t)VVV q̇qq(t)−

0∫
− h

m

t∫
t+ϑ

q̇qqT(s)VVV q̇qq(s)dsdϑ

(42)

Subsequently, using (17), (37) then it yields

v̇2(qqq(t))¬ h
m qqqT(t)UUUqqq(t)− m

h

t∫
t− h

m

qqqT(s)ds UUU
t∫

t− h
m

qqq(s)ds =

= h
m qqqT(t)UUUqqq(t)− m

h pppT
1(t)UUU ppp1(t)

(43)

and analogously, using (16), (37) then it yields

v̇3(q̇qq(t))¬ 1
2

( h
m

)2
q̇qqT(t)VVV q̇qq(t)−2

(m
h

)2 0∫
− h

m

t∫
t+ϑ

q̇qqT(s)dsdϑ VVV
0∫

− h
m

t∫
t+ϑ

q̇qq(s)dsdϑ =

= 1
2

( h
m

)2
q̇qqT(t)VVV q̇qq(t)−

−2
(m

h

)2 0∫
− h

m

(
qqqT(t)−qqqT(t +ϑ)

)
dϑ VVV

0∫
− h

m

(
qqq(t)−qqq(t +ϑ)

)
dϑ =

= 1
2

( h
m

)2
q̇qqT(t)VVV q̇qq(t)−

−2
(m

h

)2

 h
m qqqT(t)−

t∫
t− h

m

qqqT(s)ds

VVV

 h
m qqq(t)−

t∫
t− h

m

qqq(s)ds

=

= 1
2

( h
m

)2
q̇qqT(t)VVV q̇qq(t)−2

(m
h

)2 ( h
m qqqT (t)− pppT

1(t)
)

VVV
( h

m qqq(t)− ppp1(t)
)

(44)

Since (36)–(38) implies

pppT (t − h
m
) = pppT

2(t)+
t−h∫

t−h− h
m

qqqT(s)ds (45)

defining the notations

qqq◦T(t) =
[

qqqT(t) pppT
1(t) pppT

2(t) pppT
3(t)

]
(46)
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pppT
3(t) =

t−h∫
t−h− h

m

qqqT(s)ds (47)

then with respect to (33), (34) it can be written for the parts of the autonomous system
model

AAAqqq(t)+AAAh

t∫
t−h

qqq(s)ds = TTTAqqq◦(t) = q̇qq(t) (48)

TTTIqqq◦(t) = qqq(t) (49)

which implies for the first two elements of (39)

q̇qqT(t)PPPqqq(t)+qqqT(t)PPPq̇qq(t) = qqq◦T (t)(TTT T
A PPPTTTI +TTT T

I PPPTTTA)qqq◦(t) (50)

In the same sense, using (28)–(32) it can be obtained

v̇1(qqq(t)) = pppT(t)WWW ppp(t)− pppT (t − h
m
)WWW ppp(t − h

m
) = qqq◦T (t)TTT T

WWWW ◦TTTW qqq◦(t) (51)

v̇2(qqq(t))¬
h
m

qqqT(t)UUUqqq(t)− m
h

pppT
1(t)UUU ppp1(t) = qqq◦T (t)TTT T

UUUU◦TTTU qqq◦(t) (52)

v̇3(q̇qq(t))¬ 1
2

( h
m

)2
q̇qqT(t)VVV q̇qq(t)−2

(m
h

)2
( h

m qqqT(t)− pppT
1(t))VVV ( h

m qqq(t)− ppp1(t)) =

= qqq◦T (t)TTT T
V VVV ◦TTTV qqq◦(t)

(53)

With PPP◦ defined in (27) it follows that

v̇(qqq(t))¬ qqq◦T (t)PPP◦qqq◦(t)< 0 (54)

if the matrix inequality PPP◦ < 0 is feasible, i.e. (54) implies (27). This concludes the
proof.

5. Control law parameter design

With the preceded results, considering the control law parameter KKK, it is now possible
to state the next design conditions.

Theorem 5 The closed-loop system (1) controlled by the control law (4) is asymptot-
ically stable if for given h > 0, m > 0 there exist symmetric positive definite matrices
YYY ,UUU•,VVV • ∈ Rn×n, WWW • ∈ Rmn×mn, and a matrix ZZZ ∈ Rr×n such that

YYY = YYY T > 0, UUU• =UUU•T > 0, VVV • =VVV •T > 0, WWW • =WWW •T > 0 (55)
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PPP⋄ ∗∗∗

TTT ⋄
AYYY ⋄ −b−2VVV •

]
< 0 (56)

PPP⋄ = YYY ⋄T TTT ⋄T
A TTTI +TTT T

I TTT ⋄
A YYY ⋄+TTT T

UUUU⋄TTTU +TTT T
V 2VVV ⋄

2 TTTV 2 +TTT T
WWWW ⋄TTTW (57)

where

UUU⋄ =

[
UUU•

−UUU•

]
, WWW ⋄ =

[
WWW •

−WWW •

]
, VVV ⋄

2 =VVV •−2YYY (58)

YYY ⋄ = diag

[ [
YYY
ZZZ

]
YYY diag

[
YYY · · · YYY

]
YYY

]
(59)

YYY ⋄∈R(n(m+2)+r)×n(m+2), WWW ⋄∈R2rn×2rn, UUU◦∈R2n×2n are structured matrix variables,

TTTV 2 = b−1
[

a2IIIn −IIIn

[
000 · · · 000

]
000
]

(60)

TTT ⋄
A =

[
[AAA −BBB] AAAh

[
AAAh · · · AAAh

]
000
]

(61)

and TTTU , TTTW , TTTI , a and b are as in (28), (30), (34), (31), respectively.
Now, the control gain matrix KKK can be found directly as

KKK = ZZZYYY−1 (62)

Hereafter, ∗∗∗ denotes the symmetric item in a symmetric matrix.

Proof By Schur complement (9) the inequality (27) is equivalent to[
PPP• TTT T

V 1

TTTV 1 −b−2VVV−1

]
=

[
PPP• TTT T

A

TTTA −b−2VVV−1

]
< 0 (63)

where TTTV 1, TTTV 2 are the first and the second row of TTTV , respectively and

PPP• = TTT T
A PPPTTTI +TTT T

I PPPTTTA +TTT T
UUUU⋄TTTU +TTT T

WWWW ⋄TTTW −TTT T
V 2VVV TTTV 2 (64)

Then defining the congruence transform matrix

TTTc = diag
[

TTTc1 IIIn

]
= diag

[
PPP−1 PPP−1 diag

[
PPP−1 · · · PPP−1

]
PPP−1 IIIn

]
(65)

TTTc1 = diag
[

PPP−1 PPP−1 diag
[

PPP−1 · · · PPP−1
]

PPP−1
]

(66)

and pre-multiplying right-hand side and left-hand side of (63) by (65) gives the next
result [

TTTc1PPP•TTTc1 TTTc1TTT T
A

TTTATTTc1 −b−2VVV−1

]
< 0 (67)
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Defining PPP−1 = YYY then
TTTATTTc1 = TTTAYYY • (68)

YYY • = TTTc1 = diag
[

YYY YYY diag
[

YYY · · · YYY
]

YYY
]

(69)

Subsequently, with the notation (58), it yields

TTTc1
(
TTT T

A PPPTTTI +TTT T
I PPPTTTA

)
TTTc1 = YYY •TTT T

A TTTI +TTT T
I TTTAYYY • (70)

TTTc1TTT T
UUUU◦TTTU TTTc1 = TTT T

UUUU⋄TTTU , (71)

UUU⋄ =

[
UUU•

−UUU•

]
, UUU• = YYYUUUYYY (72)

TTTc1TTT T
WWWW ◦TTTW TTTc1 = TTT T

WWWW ⋄TTTW (73)

WWW ⋄ =

[
WWW •

−WWW •

]
, WWW • = diag

[
YYY · · · YYY

]
WWW diag

[
YYY · · · YYY

]
(74)

and with (6)

TTTc1TTT T
V 2VVV TTTV 2TTTc1 = TTT T

V 2PPP−1VVV PPP−1TTTV 2  TTT T
V 2
(
2PPP−1−VVV−1)TTTV 2 (75)

−TTTc1TTT T
V 2VVV TTTV 2TTTc1 ¬ TTT T

V 2VVV ⋄
2 TTTV 2 (76)

respectively, where

VVV−1 =VVV •, PPP−1 = YYY , VVV ⋄
2 =VVV •−2YYY . (77)

Thus, (67), (68) can be rewritten as[
PPP•

A YYY •T TTT T
A

TTTAYYY • −b−2VVV •

]
< 0 (78)

PPP•
A = YYY •TTT T

A TTTI +TTT T
I TTTAYYY •+TTT T

UUUU◦TTTU +TTT T
WWWW ◦TTTW +TTT T

V 2VVV ◦
2 TTTV 2 (79)

Replacing the matrix AAA in (33) by the closed-loop system matrix AAAc = AAA−BBBKKK results in

AAAcYYY = AAAYYY −BBBKKKYYY (80)

and defining
KKKYYY = ZZZ (81)

it can be written
(TTTAYYY •)Ac = TTT ⋄

AYYY ⋄ (82)

(YYY •TTT T
A TTTI +TTT T

I TTTAYYY •)Ac = YYY ⋄TTT ◦T
A TTTI +TTT T

I TTT ◦
AYYY ⋄, PPP•

Ac
= PPP⋄ (83)
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owing to that with (59), (61) it is[
AAA−BBBKKK AAAh

[
AAAh · · · AAAh

]
000
]

diag
[

YYY YYY diag
[

YYY · · · YYY
]

YYY
]
=

=
[
[AAA −BBB] AAAh

[
AAAh · · · AAAh

]
000
]

diag

[ [
YYY
ZZZ

]
YYY diag

[
YYY · · · YYY

]
YYY

]
(84)

Thus, replacing TTTAYYY • by TTT ⋄
AYYY ⋄ in (78), (79) these implies (56), (57). This concludes the

proof.

6. Illustrative example

To demonstrate the algorithm properties it was assumed that system is given by (1),
(2), where the system parameters are

AAA =

 2.6 0.0 −0.8
1.2 0.2 0.0
0.0 −0.5 3.0

 , CCC =

[
1 2 1
1 1 0

]

AAAh =

 0.00 0.02 0.00
0.00 0.00 −1.00

−0.02 0.00 0.00

 , BBB =

 1 3
2 1
1 1


Setting m = 2 and solving (55), (56) with respect the LMI matrix variables YYY , ZZZ, UUU•,
VVV •, and WWW • using Self-Dual-Minimization (SeDuMi) package [15] for Matlab, the gain
matrix problem was solved as feasible for h¬ 5.2 s, with

KKK =

[
−3.8810 −2.3846 14.2883

4.1853 2.1543 −11.5520

]
, AAAc =

 −6.0749 −4.0782 19.5678
4.7767 2.8150 −17.0246

−0.3043 −0.2697 0.2637


and with the stable eigenvalue spectrum of the closed-loop system matrix eig(AAAc) =
= {−1.6148, −0.6907±0.4192i}.

To characterize the steady-state control properties the extended closed-loop system
matrix AAAce = AAA+AAAh −BBBKKK was computed, where

AAAce =

 −6.0749 −4.0582 19.5678
4.7767 2.8150 −18.0246

−0.3243 −0.2697 0.2637

 , eig(AAAce) = {−1.3692, −0.8135±0.1423i}
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Figure 1. Responses of the system: a) state variables, b) output variables

Setting initial state as qqqT
h (−5.2) = [0.1 0.0 −0.1], Fig. 1 shows the closed-loop system

state and output response.
Note, presented algorithms is enough robust to the system time-delay value h in that

sense that for given m there exists such upper bound of h the design task be feasible. It
is possible to verify that e.g. if m = 3 then h¬ 6.7s, if m = 4 then h¬ 8.1s, etc.

7. Concluding remarks

Design conditions, explained with respect to formal limitations triggered by exis-
tence of structured matrix variables in LMIs, and formulated using an extended version
of the Lyapunov-Krasovskii functional, are derived in the paper. Obtained formulation
is a convex LMI problem where the manipulation is accomplished in that manner that
produces the closed-loop system asymptotical stability. Presented illustrative example
confirms the effectiveness of proposed control design techniques. In particular, with the
use of an extended version of Lyapunov-Krasovskii functional, it was shown how to
adapt the standard approach to design optimal matrix parameters of state controllers for
linear systems with distributed time delays.
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