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Abstract. Factional Discrete-time linear systems with fractional different orders are addressed. The Weierstrass-Kronecker decomposition

theorem of the regular pencil is extended to the descriptor fractional discrete-time linear system with different fractional orders. Using the

extension, method for finding the solution of the state equation is derived. Effectiveness of the method is demonstrated on a numerical

example.
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1. Introduction

Descriptor (singular) linear systems have been considered in

many papers and books [1–9]. The first definition of the frac-

tional derivative was introduced by Liouville and Riemann

at the end of the 19th century [10, 11] and another one was

proposed in 20th century by Caputo [12]. This idea has been

used by engineers for modeling different processes [13–15].

Mathematical fundamentals of fractional calculus are given in

the monographs [10–12, 16]. Solutions of the state equations

of descriptor fractional discrete-time linear systems with regu-

lar pencils have been given in [7, 17] and for continuous-time

in [5, 6]. Reduction and decomposition of singular fractional

discrete-time linear systems has been considered in [18]. Ap-

plication of the Drazin inverse method to analysis of descrip-

tor fractional discrete-time and continuous-time linear systems

have been given in [19, 20]. The positive fractional linear sys-

tems has been investigated in [21, 22]. The positive linear sys-

tems with different fractional orders have been addressed in

[23, 24]. Stability of fractional continuous-time linear systems

consisting of n subsystem with different fractional orders has

been given in [25]. Reachability and minimum energy con-

trol problem for systems with two different fractional orders

has been considered in [26]. Solution of the state equation of

descriptor fractional continuous-time linear systems with two

different fractional orders has been introduced in [27]. Com-

parison of three different methods for finding the solution of

the descriptor fractional discrete-time linear system has been

given in [28].

In this paper the solution to descriptor fractional discrete-

time linear systems with two different fractional order is de-

rived.

The paper is organized as follows. In Sec. 2 basic in-

formation on the fractional discrete-time linear systems with

different fractional orders is recalled. Descriptor fractional

discrete-time linear systems with different fractional orders

are addressed in Sec. 3, where the Weierstrass-Kronecker de-

composition is given. Main idea of the paper is presented in

Sec. 4, where the solution to descriptor fractional discrete-

time linear systems with different fractional orders is derived

and illustrated by numerical example. Concluding remarks are

given in Sec. 5.

The following notation is used: ℜ – the set of real num-

bers, ℜn×m – the set of n × m real matrices, Z+ – the set

of nonnegative integers, In – the n × n identity matrix, AT

– the transpose matrix A.

2. Fractional different orders discrete-time

linear systems

Consider the fractional discrete-time linear system with two

different fractional orders α and β of the form

∆αx1(k + 1) = A11x1(k) + A12x2(k) + B1u(k),

∆βx2(k + 1) = A21x1(k) + A22x2(k) + B2u(k),
(1)

where k ∈ Z+, x1(k) ∈ ℜn1 and x2(k) ∈ ℜn2 are the state

vectors, u(k) ∈ ℜm is the input vector and Aij ∈ ℜni×nj ,

Bi ∈ ℜni×m; i, j = 1,2, n = n1 + n2.

The fractional difference of α (β) order is defined by [22]

∆αx(k) =

k∑

j=0

(−1)j

(
α

j

)
x(k − j) =

k∑

j=0

cα(j)x(k − j),

cα(j) = (−1)j

(
α

j

)
= (−1)j α(α − 1)...(α − j + 1)

j!
,

cα(0) = 1, j = 1, 2, ...

(2)
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Using (2) we can write Eq. (1) in the matrix form

[
x1(k + 1)

x2(k + 1)

]
=

[
A1α A12

A21 A2β

][
x1(k)

x2(k)

]

−

k+1∑

j=2

[
cα(j)In1

0

0 cβ(j)In2

][
x1(k − j + 1)

x2(k − j + 1)

]

+

[
B1

B2

]
u(k),

(3)

where A1α = A11 + I1α, A2β = A22 + I2β.

Note that, the fractional system (3) is equivalent to the 2D

standard system with increasing number of delays.

Theorem 1. The solution to the fractional system described

by Eq. (1) with initial conditions x1(0) = x10, x2(0) = x20

is given by

[
x1(k)

x2(k)

]
= Φk

[
x1(0)

x2(0)

]
+

k−1∑

i=0

Φk−i−1

[
B1

B2

]
u(i),

k ∈ Z+,

(4)

where Φk is defined by

Φk =





In1+n2
for k = 0,

AΦk−1 − D1Φk−2 − ... − Dk−1Φ0

for k = 1, 2, ..., i

AΦk−1 − D1Φk−2 − ... − DiΦk−i−1

for k = i + 1, i + 2, ...

(5a)

and

A =

[
A1α A12

A21 A2β

]
,

Dk =

[
cα(k + 1)In1

0

0 cβ(k + 1)In2

]
.

(5b)

Proof is given in [22].

3. Descriptor fractional different orders

discrete-time linear systems

Consider the descriptor fractional discrete-time linear system

with two different fractional orders

E1∆
αx1(k + 1) = A11x1(k) + A12x2(k) + B1u(k),

E2∆
βx2(k + 1) = A21x1(k) + A22x2(k) + B2u(k),

(6)

where k ∈ Z+, x1(k) ∈ ℜn1 and x2(k) ∈ ℜn2 are the state

vectors, u(k) ∈ ℜm is the input vector and Ei, Aij ∈ ℜni×nj ,

Bi ∈ ℜni×m; i, j = 1, 2.

Similar as in Sec. 2, using (2) we can write Eq. (6) in the

matrix form

[
E1 0

0 E2

][
x1(k + 1)

x2(k + 1)

]
=

[
A1α A12

A21 A2β

][
x1(k)

x2(k)

]

−

k+1∑

j=2

[
cα(j)E1 0

0 cβ(j)E2

][
x1(k − j + 1)

x2(k − j + 1)

]

+

[
B1

B2

]
u(k),

(7)

where A1α = A11 + E1α, A2β = A22 + E2β and E1 ∈

ℜn1×n1 , E2 ∈ ℜn2×n2 , which represents the descriptor 2D

standard system with increasing number of delays.

Finding a solution for the system (7) is very difficult since

detE1 = 0, detE2 = 0 and the pencil is very complex.

It is much easier to use a standard form

E

[
∆αx1(k + 1)

∆βx2(k + 1)

]
= A

[
x1(k)

x2(k)

]
+ Bu(k), (8a)

where

E =

[
E1 0

0 E2

]
, A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
. (8b)

It is assumed that

detE = 0 (9a)

and

det

[[
E1z1 0

0 E2z2

]
−

[
A11 A12

A21 A22

]]
6= 0 (9b)

for some z ∈ C (the field of complex numbers). This assump-

tion lead to descriptor system with regular pencil.

Now, using the Weierstrass-Kronecker decomposition the-

orem of the regular pencil [22, 29] and adopting it to the

systems with two different fractional orders, we have the fol-

lowing Lemma.

Lemma 1. If (9a) and (9b) hold for the systems with two

different fractional orders (8), then there exist nonsingular

matrices P, Q ∈ ℜn×n such that

P

[[
E1z1 0

0 E2z2

]
−

[
A11 A12

A21 A22

]]
Q

=

[
E1z1 0

0 E2z2

]
−

[
A11 A12

A21 A22

]
,

(10)

where

P =

[
P1 0

0 P2

]
, Q =

[
Q1 0

0 Q2

]
(11)
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and the following decomposition is possible

E1 = P1E1Q1 =

[
In1

1

0

0 N1

]
,

E2 = P2E2Q2 =

[
In1

2

0

0 N2

]
,

A11 = P1A11Q1 =

[
Ã11 0

0 In2

1

]
,

A12 = P1A12Q2 =

[
Ã1

12 0

0 Ã2
12

]
,

A21 = P2A21Q1 =

[
Ã1

21 0

0 Ã2
21

]
,

A22 = P2A22Q2 =

[
Ã22 0

0 In2

2

]
,

(12)

where N1 ∈ ℜn2

1
×n2

1 , N2 ∈ ℜn2

2
×n2

2 are a nilpotent matrices

with the index µi, i = 1, 2 (i.e. N
µi

i = 0 and N
µi−1

i 6= 0),

Ã11 ∈ ℜn1

1
×n1

1 , Ã22 ∈ ℜn1

2
×n1

2 , Ã1
21 ∈ ℜn1

2
×n1

1 , Ã2
21 ∈

ℜn2

2
×n2

1 , Ã1
12 ∈ ℜn1

1
×n1

2 , A2
12 ∈ ℜn2

1
×n2

2 and rankE1 = n1
1,

rankE2 = n1
2, n1

1 + n2
1 = n1, n1

2 + n2
2 = n2, n1 + n2 = n.

Computation methods for the matrices P and Q have been

given e.g. in [8, 9, 22].

Using Lemma 1 and solution presented in [6, 7], the solu-

tion x(k) to Eq. (6) with given initial conditions x(0) and an

input vector u(k) for k ∈ Z+ is derived in the next section.

4. Solution of the state equation

Premultiplying the state Eq. (8a) by the matrix P ∈ ℜn×n

and introducing new state vector




x1
1(k)

x2
1(k)

x1
2(k)

x2
2(k)


 = Q−1

[
x1(k)

x2(k)

]
,

x1
1(k) ∈ ℜn1

1 , x2
1(k) ∈ ℜn2

1 ,

x1
2(k) ∈ ℜn1

2 , x2
2(k) ∈ ℜn2

2

(13)

we obtain

PEQQ−1

[
∆αx1(k + 1)

∆βx2(k + 1)

]

= PAQQ−1

[
x1(k)

x2(k)

]
+ PBu(k), k ∈ Z+.

(14)

Now, substituting (12) and (13) into (14) we have



In1

1

0 0 0

0 N1 0 0

0 0 In1

2

0

0 0 0 N2







∆αx1
1(k + 1)

∆αx2
1(k + 1)

∆βx1
2(k + 1)

∆βx2
2(k + 1)




=




Ã11 0 Ã1
12 0

0 In2

1

0 Ã2
12

Ã1
21 0 Ã22 0

0 Ã2
21 0 In2

2







x1
1(k)

x2
1(k)

x1
2(k)

x2
2(k)


+




B̃1
1

B̃2
1

B̃1
2

B̃2
2


u(k)

(15)

for k ∈ Z+, where

B̃1
1 ∈ ℜn1

1
×m, B̃2

1 ∈ ℜn2

1
×m,

B̃1
2 ∈ ℜn1

2
×m, B̃2

2 ∈ ℜn2

2
×m.

(16)

Lastly, from (8) we can distinguish two subsystems. The stan-

dard one [
∆αx1

1(k + 1)

∆βx1
2(k + 1)

]

=

[
Ã11 Ã1

12

Ã1
21 Ã22

][
x1

1(k)

x1
2(k)

]
+

[
B̃1

1

B̃1
2

]
u(k)

(17)

and nilpotent one
[

N1 0

0 N2

][
∆αx2

1(k + 1)

∆βx2
2(k + 1)

]

=

[
In2

1

Ã2
12

Ã2
21 In2

2

][
x2

1(k)

x2
2(k)

]
+

[
B̃2

1

B̃2
2

]
u(k).

(18)

Using Theorem 1, a solution to the subsystem (17) can be

computed by the use of the following formula
[

x1
1(k)

x1
2(k)

]
= Φk

[
x1

1(0)

x1
2(0)

]
+

k−1∑

i=0

Φk−i−1

[
B̃1

1

B̃1
2

]
u(i),

k ∈ Z+,
(19)

where

Φk =






In1

1
+n1

2

for k = 0,

ÃΦk−1 − D1Φk−2 − ... − Dk−1Φ0

for k = 1, 2, ..., i,

ÃΦk−1 − D1Φk−2 − ... − DiΦk−i−1

for k = i + 1, i + 2, ...,

(20a)

Ã =

[
Ã1α Ã1

12

Ã1
21 Ã2β

]
!,

Dk =

[
cα(k + 1)In1

1

0

0 cβ(k + 1)In2

2

]
,

Ã1α = Ã11 + In1

1

α, Ã2β = Ã22 + In1

2

β.

(20b)
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To find a solution of the subsystem (18) for N1 6= 0, N2 6= 0
nilpotent (e.g. for

N =




0 1 0

0 0 1

0 0 0




we have three equations with three unknown elements) we

simple start by solving the equation related with the zero row

and then continue solving the rest of the equations, see e.g.

[6, 7].

If N1 = 0, N2 = 0 then from (18) we have
[

x2
1(k)

x2
2(k)

]
=

[
[In2

1

− Ã2
12Ã

2
21]

−1[Ã2
12B̃

2
2 − B̃2

1 ]

[In2

2

− Ã2
21Ã

2
12]

−1[Ã2
21B̃

2
1 − B̃2

2 ]

]
u(k),

k ∈ Z+.

(21)

Finally, knowing
[

x1
1(k)

x1
2(k)

]
and

[
x2

1(k)

x2
2(k)

]
,

from (13), we can find the desired solution of the system (6)

in the form

[
x1(k)

x2(k)

]
= Q




x1
1(k)

x2
1(k)

x1
2(k)

x2
2(k)


, k ∈ Z+. (22)

Remark 1. In this study, only the diagonal form of matrix E

has been considered. These considerations can be extended to

the systems with the matrix E of (8) in general form. It is

well-known [29, 30] that by the use of elementary row oper-

ations it is always possible to reduce matrix to its diagonal

form.

Examples 1. Find the solution of the descriptor fractional lin-

ear system (6) with the fractional orders α = 0.5, β = 0.6,

matrices

E1 =




1 0 0

0 1 0

0 0 0


, E2 =




−1 −1 −1

2 4 2

1 4 1


,

A11 =




1 0 1

0 1 0

−1 0 −1


, A12 =




4 11 6

2 5 2

0 0 −2


,

A21 =




3 2 6

9 2 3

3 7 0


, A22 =




0.8 1.7 2.8

0.4 0.8 1.4

2.2 4.6 2.2


,

B1 =




1

0

−1


, B2 =




1

0

1


,

(23)

and consistent initial conditions x1(0) = [ 1 2 −1 ]T ,

x2(0) = [ 0 2 1 ]T .

It is easy to check that the matrices (23) satisfy the as-

sumptions (9). In this case the matrices P and Q have the

form

P =

[
P1 0

0 P2

]
, Q =

[
Q1 0

0 Q2

]
,

P1 =




0 1 0

1 0 1

0 0 −1


, P2 =

1

11




1 −2 5

−2 4 1

4 3 −2


,

Q1 =




0 1 0

1 0 0

0 −1 1


, Q2 =




−2 1 −1

1 0 0

0 0 1




(24)

and

PEQ=




In1

1

0 0 0

0 N1 0 0

0 0 In1

2

0

0 0 0 N2


=




1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0




,

Q−1

[
x1(k)

x2(k)

]
=




x1
1(k)

x2
1(k)

x1
2(k)

x2
2(k)


 =




x1
11(k)

x1
12(k)

x2
11(k)

x1
21(k)

x1
22(k)

x2
21(k)




,

PAQ =




Ã11 0 Ã1
12 0

0 In2

1

0 Ã2
12

Ã1
21 0 Ã22 0

0 Ã2
21 0 In2

2




=




1 0 0 1 2 0

0 0 0 3 4 0

0 0 1 0 0 2

3 0 0 0.1 1 0

1 3 0 0 0.2 0

0 0 3 0 0 1




,

PB =




B̃1
1

B̃1
2

B̃2
1

B̃2
2


 =




0

0

1

0.545

−0.091

0.182




,

n1
1 = n1

2 = 2, n2
1 = n2

2 = 1,

n1 = n2 = 3, n = n1 + n2 = 6.

(25)
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Taking under considerations n1
1, n

1
2, formula (19) has the form




x1
11(k)

x1
12(k)

x1
21(k)

x1
22(k)


=Φk




x1
11(0)

x1
12(0)

x1
21(0)

x1
22(0)


+

k−1∑

i=0

Φk−i−1




B̃1
11

B̃1
12

B̃1
21

B̃1
22


u(i),

k ∈ Z+,

(26)

where Φk is defined by (20a) with

Ã =

[
Ã1α Ã1

12

Ã1
21 Ã2β

]
=




1.5 0 1 2

0 0.5 3 4

3 0 0.7 1

1 3 0 0.8


,

Di =

[
cα(i + 1)I2 0

0 cβ(i + 1)I2

]
,




B̃1
11

B̃1
12

B̃1
21

B̃1
22


 =




0

0

0.545

−0.051


.

(27)

To compute (26), first we have to compute matrices Φk for

k ∈ Z+, which in this example have the form

Φ0 = I4,

Φ1 =

[
Ã1α Ã1

12

Ã1
21 Ã2β

]
=




1.5 0 1 2

0 0.5 3 4

3 0 0.7 1

1 3 0 0.8


 ,

Φ2 =

[
Ã1α Ã1

12

Ã1
21 Ã2β

]2

−




α(α − 1)

2!
I2 0

0
β(β − 1)

2!
I2




=




7.375 6 2.2 5.6

13 12.375 3.6 8.2

7.6 3 3.64 7.5

2.3 3.9 10 14.79


,

Φ3 = ÃΦ2 − D1Ã − D2I4

=




23.263 19.8 27.059 45.718

38.5 30.663 53.077 86.236

30.177 24 19.043 36.978

48.359 46.677 21 41.941


 , ...

(28)

then we can commute vector

[ x1
11(k) x1

12(k) x1
21(k) x1

22(k) ]T .

Nilpotent subsystem (18) has the form
[

N1 0

0 N2

]
=

[
In2

1

Ã2
12

Ã2
21 In2

2

][
x2

11(k)

x2
21(k)

]
+

[
B̃2

11

B̃2
21

]
u(k),

k ∈ Z+,

(29)

where
N1 = N2 = 0,

[
In2

1

Ã2
12

Ã2
21 In2

2

]
=

[
1 2

3 1

]
,

[
B̃2

11

B̃2
21

]
=

[
1

0.182

]
.

(30)

In this case, from (29) for (30) we have
[

x2
11(k)

x2
21(k)

]
=

[
0.127

−0.564

]
u(k), k ∈ Z+. (31)

Finally, the desired solution of the descriptor fractional linear

system (6) with (23) is given by

[
x1(k)

x2(k)

]
= Q




x1
1(k)

x2
1(k)

x1
2(k)

x2
2(k)


=

[
Q1 0

0 Q2

]




x1
11(k)

x1
12(k)

x2
11(k)

x1
21(k)

x1
22(k)

x2
21(k)




, (32)

where [
x1

1(k)

x1
2(k)

]
and

[
x2

1(k)

x2
2(k)

]

are determined by (26) and (31), respectively.

5. Concluding remarks

The fractional discrete-time linear systems with two differ-

ent fractional orders has been analyzed. The Weierstrass-

Kronecker decomposition theorem of the regular pencil has

been extended to the descriptor fractional discrete-time lin-

ear system with two different fractional orders. The method

for finding the solution of the state equation has been de-

rived. Effectiveness of the method has been demonstrated on

a numerical example. Extension of these considerations on

systems consisting of n subsystems with different fraction-

al orders is possible. An open problem is the application of

the Drazin inverse to finding the solution of the system with

different fractional orders.
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