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Trajectory reproduction and trajectory tracking

problem for the nonholonomic systems

A. RATAJCZAK∗

Department of Control Systems and Mechatronics, Wrocław University of Technology, 11/17 Janiszewski St., 50-372 Wroclaw, Poland

Abstract. This paper introduces a new algorithm of trajectory reproduction and trajectory tracking for nonholonomic systems. The endogenous

configuration space approach is employed as a guideline in the algorithm derivation. The derivation uses a trajectory reproduction error,

which is an integral of the difference between the resultant trajectory and the desired trajectory over the motion horizon. Such a definition of

the error allows to solve both the trajectory reproduction as well as the trajectory tracking problem. Considerable attention in the paper has

been paid to the implementation aspects of the algorithm. The nonparametric approach is used together with a higher order of the integration

method. The algorithm efficiency is illustrated with computer simulations accomplished for two nonholonomic systems: the dynamics of the

double pendulum with a passive joint, and the kinematics of the unicycle.
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1. Introduction

The motion planning problem [1] consist in finding an in-

verse of the end-point map. Having this inverse one can find

a control function which drives the system from defined initial

point to the desired point. A slightly different kind of problem

is the trajectory reproduction or trajectory tracking problem.

In this case, in order to solve the problem the instantaneous

map has to be inverted. Then, using this inverse we are able

to compute the control function, which drives the system in

such a way that the resultant trajectory is as close as possi-

ble to the desired trajectory. This kind of problem relies on

finding a continuous inverse of function-to-function map. If

the desired trajectory is an admissible trajectory of the sys-

tem, and for the initial time the system stands on the desired

trajectory then the problem is called trajectory reproduction

problem. When one or both above conditions are not meet

then the problem is called trajectory tracking problem.

The reproduction problem is the one of the fundamen-

tal problems in the system theory. It allows to consider such

problems as a system reproducibility or finding the continuous

map inverse. The problem of the linear system reproducibility

is introduced in [2]. The review of the continuous map inverse

in nonlinear systems can be found in [3].

The trajectory reproduction or the trajectory tracking prob-

lem for the nonholonomic systems is widespread in the liter-

ature. For example, in [4] the authors present the stabiliza-

tion around the desired trajectory. This approach is based on

a closed loop algorithm, however the initial control which re-

alizes the nominal trajectory (without disturbances) is needed.

The trajectory tracking with obstacles avoidance is considered

in [5], where in order to solve the trajectory tracking prob-

lem the Vector Field Orientation method together with the

Artificial Potential Function are employed. The trajectory re-

production with the continuation method is presented in [6].

There, the wanted control function is obtained as a solution

of the second order partial differential equation. The trajecto-

ry tracking problem can be also solved using the Lie algebra

together with the transverse function control approach pre-

sented in [7, 8]. The experimental verification of the solution

of the trajectory tracking problem could be also find in the

literature [9, 10].

This paper introduces a new approach to the trajectory

reproduction and the trajectory tracking problem. In order to

derive the algorithm the endogenous configuration space ap-

proach [11] is employed as a guideline. As a result of the new

algorithm we obtain a control function which provides a sys-

tem motion which minimizes the distance between the system

resultant trajectory and the desired trajectory. The endogenous

configuration space approach was firstly applied to a contin-

uous inverse problem in [12]. In this work, the continuous

inverse problem is solved in approximated way with an arbi-

trary error profile. The new approach presented in this paper

slightly corresponds to the theoretical framework in [12]. The

main novel of this work is the formulation of the instantaneous

kinematics of a nonholonomic system and a Jacobian inverse

algorithm based on the endogenous configuration space ap-

proach which allows us to solve the continuous inverse prob-

lem for a nonholonomic systems.

One of the advantages of the presented methodology is

that the introduced algorithm does not depend on the prop-

erties of the systems. It can be applied to any nonholonomic

system which could be represented by a control affine sys-

tem. In the paper the approach will be enroll to two different

nonholonomic systems, i.e. the underactuated manipulator and

the unicycle. The former with the second order nonholonom-

ic constraints and the latter with the first order nonholonomic

constraints.
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The paper is composed in the following way. Section 2 in-

troduces the trajectory reproduction and the trajectory tracking

problem. The algorithm derivation with all necessary theoreti-

cal preliminaries contains Sec. 3. The implementation aspects

together with the simulation results are collected in Sec. 4.

Section 5 concludes the paper.

2. Trajectory reproduction/tracking problem

Let us introduce the control affine system with the output

function
{

q̇ = f(q) + G(q)u,

y = k(q),
(1)

where q ∈ Rn is the state space vector, u ∈ Rm stands for

the vector of control functions, and the task space vector is

denoted by y ∈ Rr. Moreover, in the control affine system

(1), G(q) ∈ Rn×m is the control matrix and f(q) ∈ Rn is the

drift term. For such system let us define the trajectory repro-

duction/tracking problem in the following way. Find a control

function u(t) which drives the system (1), over a prescribed

time interval [0, T ], such that the system output trajectory y(t)
is as close as possible to the demanded trajectory yd(t).

Remark 1. When the initial condition y(0) of the system (1)

output coincides with the demanded trajectory at t = 0, i.e.

y(0) = yd(0) and the desired trajectory is an admissible tra-

jectory then the problem becomes a trajectory reproduction

problem. When the initial points of the output and demanded

trajectory are different or when the demanded trajectory is

non-admissible then the problem will be called the trajectory

tracking problem.

3. Algorithm

The algorithm derivation bases on the endogenous configu-

ration space approach [11], which was originally introduced

to solve the motion planning problem for mobile manipu-

lators. However, the systematically exploration of that idea

yields with the adaptation of the endogenous configuration

space approach to more complex systems [13]. The endoge-

nous configuration is a space L2
m[0, T ] of Lebesgue square

integrable functions defined on the interval [0, T ]. The space

L2
m[0, T ] is a Hilbert space with inner product

〈u1(·), u2(·)〉 =

T
∫

0

uT
1 (t)u2(t) dt

and the norm ‖u(·)‖2 =
T
∫

0

uT(t)u(t) dt. Every admissi-

ble control function u(·) ∈ U ⊂ L2
m[0, T ] corresponds to

the state trajectory q(t) = ϕq0,t(u(·)) and output trajectory

y(t) = k(ϕq0,t(u(·))), where ϕq0,t(u(·)) denotes the flow of

the system (1) at the moment t, starting from q0 and driven

by u(·). Let us assume that those trajectories are well defined

for every t ∈ [0, T ].

3.1. Preliminaries. Let us introduce the instantaneous map

which transforms the control space to task space Kq0,t : U →
Rr. For every control function u(t) ∈ U the instantaneous

map provides the output value y(t) and is defined as follows

Kq0,t(u(·)) = y(t) = k(ϕq0,t(u(·))). (2)

Formally, the map (2) resembles the instantaneous kine-

matics. Following that, let us define the system Jacobian as

a derivative of the instantaneous map

Jq0,t(u(·))v(·) = DKq0,t(u(·))v(·)

=
d

dδ

∣

∣

∣

∣

∣

δ=0

Kq0,T (u(·) + δv(·))

= C(t)

t
∫

0

Φ(t, s)B(s)v(s) ds.

(3)

To compute the system Jacobian let us introduce the linear

approximation to system (1)
{

ξ̇(t) = A(t)ξ(t) + B(t)v(t),

η(t) = C(t)ξ(t),
(4)

along a control-trajectory (u(t), q(t)) pair where the matrices

can be computed from

A(t) =
∂(f(q(t)) + G(q(t))u(t))

∂q
,

B(t) =
∂(f(q(t)) + G(q(t))u(t))

∂u
= G(q(t)),

C(t) =
∂k(q(t))

∂q

and

ξ(t) = Dϕq0,t(u(·)).

The matrix Φ(t, s) from (3) is the fundamental matrix of the

linear system (4) and fulfills the differential equation [14]

∂

∂t
Φ(t, s) = A(t)Φ(t, s), (5)

with initial condition Φ(s, s) = In.

Enrolling the above formulas we can rewrite the defini-

tion of the trajectory reproduction/tracking problem as: find

a control function u∗(·) ∈ U , which drives the system in such

way that the difference between the output trajectory and the

desired trajectory is as small as possible

min
u(·)

‖y(·) − yd(·)‖
2 = min

u(·)
‖k(ϕq0,t(u(·))) − yd(t)‖

2.

To start the derivation of the algorithm we shall formu-

late the task map K1
q0,T : U → R of the trajectory reproduc-

tion/tracking problem which takes the following form

K
1
q0,T (u(·)) =

1

2

T
∫

0

(y(t) − yd(t))
TW (t)(y(t) − yd(t)) dt,

(6)

where W (t) = diag{w1(t), w2(t), . . . , wr(t)}, wi(t) >
0 is a diagonal weighting matrix. Alternatively, the task
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map (6) could be defined as a vector instead of a scalar, i.e.

K2
q0,T : U → Rr, then the map takes the form

K
2
q0,T (u(·)) =

1

2

T
∫

0

W (t)







(y1(t)−y1d(t))2

(y2(t)−y2d(t))2

...
(yr(t)−yrd(t))2






dt,

where again

W (t) = diag{w1(t), w2(t), . . . , wr(t)},

wi(t) > 0

is a diagonal weighting matrix. The both definitions of task

maps could be rewritten in more general form as

Kq0,T (u(·)) =

T
∫

0

F (y(t)) dt =

T
∫

0

F (k(q(t))) dt, (7)

where the function F (y(t)) ≥ 0 and it is differentiable wher-

ever defined.

With the task map (7) we associate the Jacobian which

may be obtained by differentiation of the task map

Jq0,T (u(·))v(·) = DKq0,T (u(·))

=
d

dδ

∣

∣

∣

∣

∣

δ=0

Kq0,T (u(·) + δv(·)) =

d

dδ

∣

∣

∣

∣

∣

δ=0

T
∫

0

F (k(ϕq0,t(u(·) + δv(·)))) dt

=

T
∫

0

∂F (y(t))

∂y
Dk(ϕq0,t(u(·))v(·)) dt.

(8)

Substituting (3) into (8) we arrive with the general formula

of the Jacobian for trajectory reproduction/tracking problem

Jq0,T (u(·))v(·)

=

T
∫

0

∂F (y(t))

∂y
Jq0,t(u(·))v(·) dt.

Using the above derivation we formulate two Jacobians for

task map K1
q0,T (u(·)) and K2

q0,T (u(·)) respectively as

J
1
q0,T (u(·))v(·)

=

T
∫

0

(y(t) − yd(t))
TW (t)Jq0,t(u(·))v(·) dt

(9)

and

J
2
q0,T (u(·))v(·)

=

T
∫

0

diag{(y1(t) − y1d(t)), . . . ,

(yr(t) − yrd(t))}W (t)Jq0,t(u(·))v(·) dt.

(10)

3.2. Algorithm derivation. Using the task map (7) we

can define the error function of the trajectory reproduc-

tion/tracking problem as eT = Kq0,T (u(·)). In view of that

error formula the trajectory reproduction/tracking algorithm

finds a control function which drives the system (1) in such

way that the error value is minimised. The following prob-

lem can be solved by means of a Jacobian algorithm whose

derivation uses the homotopy method [15]. This being so, in

the control space U we choose a smooth curve uθ(·) parame-

trized with a variable θ ∈ R, which passes a certain initial

configuration u0(·). Along this curve we compute the tra-

jectory reproduction/tracking error eT (θ) and we want it to

decrease exponentially

deT (θ)

dθ
= −γeT (θ), (11)

with a decay rate γ. Substituting eT (θ) = Kq0,T (uθ(·)) into

(11) we arrive with the Ważewski-Davidenko equation

d

dθ
Kq0,T (uθ(·))

= Jq0,T (uθ(·))
duθ(·)

dθ
= −γeT (θ).

(12)

Employing a right Jacobian inverse J
#
q0,T (uθ(·)), such that

Jq0,T (uθ(·))J
#
q0,T (uθ(·)) = I , the Eq. (12) takes the form of

the dynamic system

duθ(·)

dθ
= −γJ

#
q0,T (uθ(·))eT (θ), (13)

which constitutes the trajectory reproduction/tracking algo-

rithm. The solution of the trajectory tracking problem is a lim-

it u∗(t) = limθ→∞ uθ(·) of the resultant trajectory of (13).

As a right Jacobian inverse appearing in (13) we choose

the Moore-Penrose inverse derived from minimizing the

square norm of the control function minv(·) ‖v(·)‖2 with re-

specting the Jacobian equation

Jq0,T (u(·))v(·) = η, (14)

where if we take J1
q0,T (u(·))v(·) then the η ∈ R and if we take

J2
q0,T (u(·))v(·) then the η ∈ Rr. The corresponding Lagrange

function takes the form

L(v(·), λ)=

T
∫

0

(

vT(t)v(t) + λ
∂F (y(t))

∂y
Jq0,t(u(·))v(·)

)

dt

=

T
∫

0



vT(t)v(t)+λ
∂F (y(t))

∂y
C(t)

t
∫

0

Φ(t, s)B(s)v(s) ds



dt,

where λ ∈ R is a Lagrange multiplier. The differentiation of

the Lagrange function with respect to v(·) and equating the

derivative to 0

DL(v(·), λ)µ(·) =
d

dδ

∣

∣

∣

∣

∣

δ=0

L(v(·) + δµ(·), λ) = 0,

together with the identity

T
∫

0

t
∫

0

f(t, s)dsdt =

T
∫

0

T
∫

s

f(t, s) dt ds,
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yield

v(t)=−λBT(t)

T
∫

t

Φ(s, t)

(

∂F (y(t))

∂y

)T

ds=−λα(t). (15)

Now, we eliminate the Lagrange multiplier λ by inserting

(15) into (14) and we arrive with equality

−λ‖α(·)‖2 = η,

which allows us to compute the λ. Finally we obtain

v(t) =
α(t)

‖α(·)‖2
η

which defines the right Jacobian pseudoinverse [16] for tra-

jectory reproduction/tracking problem

(

J
#
q0,T (uθ(·))η

)

(t) =
α(t)

‖α(·)‖2
η. (16)

The form of the particular Jacobian pseudoinverse, cor-

responding with one of the Jacobians (9) or (10), could be

obtained from the formula (16)

J
1#
q0,T (u(·)) : R → U ,

(

J
1#
q0,T (u(·))η

)

(t) =
α1(t)

‖α1(·)‖
2 η,

(17)

where

α1(t) = BT(t)

T
∫

t

ΦT(s, t)CT(s)W (s)(y(s) − yd(s))ds,

and
J
2#
q0,T (u(·)) : R

r → U ,
(

J
2#
q0,T (u(·))η

)

(t) =
α2(t)

‖α2(·)‖
2 η,

(18)

where

α2(t) = BT(t)

T
∫

t

ΦT(t, s)CT(s)W (s)

diag{(y1(s) − y1d(s)), . . . , (yr(s) − yrd(s))}ds.

One of the presented Jacobian pseudoinverses (17) or (18)

could be used in the algorithm Eq. (13) to solve the trajectory

reproduction/tracking problem. The computed control func-

tion u∗(t) generates the system (1) output trajectory which is

as close as possible to the demanded trajectory.

4. Numerical computation

In order to obtain the solution of the Jacobian trajectory repro-

duction/tracking algorithm it is necessary to solve the func-

tional differential Eq. (13) in the control space U . The solution

could be achieved using several techniques. On one side, the

computation can be provided with different integrating meth-

ods, e.g. Euler scheme or higher order method along with step

size optimization. On the other side, the control function can

be represented with the orthogonal series or can be sampled

with sufficient number of points. The first representation will

be called parametric, the second one – non-parametric [17].

Combining the presented techniques the algorithm computa-

tion falls into four classes: 1. Euler and parametric, 2. Euler

and non-parametric, 3. higher order and parametric and fi-

nally 4. higher order and non-parametric. The recent research

shows that the first class is usually easy to implement however

it contains more numerical errors. The implementation of the

last class make a challenge, but the results coincide with the

theoretical derivation.

The trajectory reproduction problem solved with the tech-

niques of the class 1. is presented in [18]. In this paper the

trajectory reproduction/tracking problem will be solved en-

rolling the 4-th class technique.

4.1. Implementation aspects. As it was already mentioned

the trajectory reproduction/tracking algorithm will be solved

directly using the non-parametric version and the MATLAB

built-in higher order integration method. For each value of in-

dependent variable θ it is necessary to solve the control affine

system Eq. (1) along with the fundamental matrix Eq. (5).

The solutions of those equations can be substituted into the

Jacobian inverse Eq. (16) or (18). Finally, using the Jaco-

bian inverse we can solve the algorithm functional differential

Eq. (13). Collecting all necessary equations we arrive with the

following set of differential-algebraic equations (DAE)


































































































































































dqθ(t)

dt
= f(qθ(t)) + G(qθ(t))uθ(t),

dΦθ(T, t)

dt
= −Φθ(T, t)Aθ(t),

duθ(t)

dθ
= −γ

α1(t)

‖α1(·)‖
2 eT (θ),

α1(t) = BT(t)

T
∫

t

ΦT(s, t)CT(s)

×W (s)(yθ(s) − yd(s))ds,

Aθ(t) =
∂(f(qθ(t)) + G(qθ(t))uθ(t))

∂q
,

Bθ(t) = G(qθ(t)),

Cθ(t) = ∂k(qθ(t))
∂q

,

eT (θ) =
1

2

T
∫

0

(yθ(t) − yd(t))
T

×W (t)(yθ(t) − yd(t)) dt,

(19)

with boundary conditions qθ(0) = q0, Φθ(T, T ) = In,

and given initial control function u0(t). The DAE system

(19) could be simply rewritten for the second task map

K2
q0,T (u(·)).

4.2. Simulations. In this section we present the simulation

results for the two models of nonholonomic robotic systems.

The first model is a planar double pendulum with passive sec-

ond joint, usually denoted by RR where the bar over the joint
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symbol means no actuation. The second model is a kinemat-

ics of a unicycle. The presented computations was done in

MATLAB environment.

RR manipulator. The schematic overview of the manipulator

is depicted in Fig. 1. The meaning of the symbols presented

in the figure are as follows: l1, l2 are the length of the links

and m1, m2 are the links masses. Under the assumption that

there is no gravity force the dynamics of the RR manipulator

takes the form [19]

M(x)ẍ + N(x, ẋ)ẋ =

(

τ

0

)

, (20)

where x ∈ R2 is the joint space vector and τ is the control

momentum in the actuated joint. The inertia matrix is de-

noted as M(x), and the N(x, ẋ) is a matrix of Coriolis and

centrifugal terms, and their definition are as follows

M(x) =

[

a +
m2(l

2

1
+l2

2
)

3
l1l2m2 cos x2

2 +
l2
2
m2

3
l1l2m2 cos x2

2 +
l2
2
m2

3
l2
2
m2

3

]

,

N(x, ẋ) =

[

−m2l1l2x4 sin x2

2 −m2l1l2(x3+x4) sin x2

2
m2l1l2x3 sin x2

2 0

]

,

where

a = m2l1l2 cosx2 + m2l
2
1.

The second equation in (20) is a set of the second order non-

holonomic constraints.

Fig. 1. RR manipulator

In order to simplify the dynamics of the manipulator we

apply the partially feedback linearization [20]

τ = (M11(x) − M12(x)M−1
22 (x)MT

12(x))u

−M12(x)M−1
22 (x)

([

N21(x, ẋ), N22(x, ẋ)
]

ẋ
)

+
[

N11(x, ẋ), N12(x, ẋ)
]

ẋ

and after introducing the new state space q = (x, ẋ) ∈ R4

we arrive with partially linearized control affine system with

output function































































q̇ = f(q) + G(q)u

=

















q3

q4

0

−
[

N21 N22

]

M−1
22

(

q3

q4

)

















+











0

0

1

−M21M
−1
22











u,

y = k(q) =





l1 cos q1 + l2 cos(q1 + q2)

l1 sin q1 + l2 sin(q1 + q2)



 .

(21)

In Eq. (21) the u has the meaning of the angular acceleration

of the actuated joint expressed in
[

rad/s2
]

, and the output

function represents the coordinates of the end-effector in task

space. For the sake of simplification we choose the model

parameters equal l1 = l2 = 0.5, m1 = 1, m2 = 0.5, where

the length could be expressed in meters [m] and the masses

in kilograms [kg].

Unicycle. The second nonholonomic robotic system used as

a testbed is an unicycle. The diagram of this model is pre-

sented in Fig. 2. The kinematics of the unicycle is derived

under the assumption that the wheel cannot slip laterally and

longitudinally and takes the form



















q̇ =







cos q3 0

sin q3 0

0 1






u,

y = k(q) = q,

where q ∈ R3 is the state space vector which denotes the
position and orientation of the unicycle and u ∈ R2 is the
control vector whose first element is the longitudinal velocity
expressed in [m/s], and the second element represents the an-
gular velocity in [rad/s]. We assume that the output function
is an identity so the output space is equal to the state space.

Fig. 2. Unicycle

Simulation results. For each of two previously introduced

nonholonomic robotic systems, the following simulations sce-

nario are provided. Simulation 1: output trajectory tracking

problem for an RR manipulator with non-admissible desired

trajectory solved using the Jacobian of the form (8). Simula-

tion 2: state trajectory reproduction problem for an unicycle

solved using the Jacobian of the form (10). Simulation 3:

state trajectory tracking problem for an unicycle solved using

the Jacobian of the form (8). It is assumed that the units in

all plots are expressed in the SI system.
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Simulation 1. For a desired trajectory we choose a straight

line yd(t) = ((l1 + l2)(T − t)/T, 0) coincides with y1 axis

(see Fig. 4, dashed line). The simulation parameters is set

as follows: time horizon t ∈ [0, 5], the decay rate γ = 3,

the initial state of the RR manipulator q0 = (0, 0, 0, 0) and

the initial control u0(t) = 0.1 sin(2πt/T ). In the Fig. 3 the

resultant control is depicted. The desired trajectory is non-

admissible so it is impossible to obtain the error equal zero.

This can be observed in the Fig. 4 as well as in the Fig. 6

where the convergence of the algorithm is shown. One can

see that the error decrease exponentially, and then saturates

on certain value, so no further improvement of the resultant

control could be made. The difference between the trajectory

of the output and the desired trajectory is depicted in Fig. 5.

Fig. 3. Simulation 1. Control functions

Fig. 4. Simulation 1. Motion path in task space

Fig. 5. Simulation 1. Output function errors

Fig. 6. Simulation 1. Algorithm convergence

Simulation 2. The desired trajectory is a circle trajectory

with the center in the axis origin and the radius equal to

1, so qd = (sin(2πt/T ),− cos(2πt/T ), 2πt/T ). This simula-

tion results are obtained for the following parameter values:

T = 5, γ = 4, u0(t) = (t/4, t/4) and q0 = [0,−1, 0] which

means that at the beginning t = 0, the unicycle stands on

the desired trajectory q(0) = qd(0). Figures 7–9 present the

solution of the state trajectory reproduction for the unicycle.

The resultant control functions are depicted in Fig. 7. Figure 8

shows the difference between the unicycle trajectory and the

desired trajectory. The values of the errors could be even more

decreased by increasing the accuracy of computations. As it

can be seen in Fig. 9 the error norm decrease exponentially

which coincides with (11).

Fig. 7. Simulation 2. Control functions

Fig. 8. Simulation 2. State errors
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Fig. 9. Simulation 2. Algorithm convergence

Simulation 3. The last simulation result shows a solution

of the trajectory tracking problem. The desired trajectory is

equal to the previous one qd = (sin(2πt/T ), − cos(2πt/T ),
2πt/T ). However, this time, the initial position of the unicycle

is moved away from the desired trajectory q0 = (0, 0, 0). The

rest of the simulation parameters are set as: T = 10, γ = 4,

u0(t) = (π/5, π/5). The solution of the problem is presented

in Figs. 10–15. The Fig. 10 shows the resultant control func-

tions of the unicycle. The motion path of the model is depicted

in Fig. 11. One can see that the distance between trajectories

is decreasing during the motion. The same observations could

be deduced from Fig. 12 where the differences between the

real and desired trajectory are shown. The trajectories of the

state vector along with the desired state trajectories present

Figs. 13 and 14. As in previous simulations the algorithm

converges exponentially (see Fig. 15).

Fig. 10. Simulation 3. Control functions

Fig. 11. Simulation 3. Motion path in XY plane

Fig. 12. Simulation 3. State errors

Fig. 13. Simulation 3. State trajectories (position)

Fig. 14. Simulation 3. State trajectories (orientation)

Fig. 15. Simulation 3. Algorithm convergence
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5. Conclusions

The proposed algorithm satisfactorily solves all presented

problems. The algorithm efficiency is illustrated with the sim-

ulation results of the trajectory reproduction as well as the tra-

jectory tracking problem for two nonholonomic robotic sys-

tems.

The presented approach is a preliminary result and needs

some further improvements. Currently, the proposed algo-

rithm convergence strongly depends on the choice of the initial

control u0(t). Further research will be performed to overtake

this disadvantage.

The presented improvements of the implementation re-

sults in more accurate computations, contrary to the numerical

method presented in [18]. Moreover, the accuracy of compu-

tation could be manipulated using a standard MATLAB op-

eration. This fact also helps to obtain even smaller trajectory

reproduction or tracking error. The decrease of the error val-

ue could be achieved by increasing the computation accuracy,

however, it reflects on the computation time.

Up to now, the main disadvantage of this approach is the

computation time. The computation of the algorithm step (i.e.

the solution of system (19) for one value of θ) takes about

4s (PC with a 3.2GHz processor). The number of computed

steps strongly depends on the chosen accuracy. The simula-

tions presented in the paper take around 500 steps. Those

numbers disqualify the present form of the algorithm to be

able to operate in real time. One of the future work direc-

tion will be focused on the computation time reduction. On

the other hand, the presented algorithm is an open-loop al-

gorithm, so the computation could be done before the real

motion. One could find the control function, which should

drive the system close to the desired trajectory, which for ex-

ample, could be passed as an input argument to the control

algorithm presented in [4].
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