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Determinig of an object orientation in 3D space using
direction cosine matrix and non-stationary Kalman

filter

ROBERT BIEDA and KRZYSZTOF JASKOT

This paper describes a method which determines the parameters of an object orientation in
3D space. The rotation angles calculation bases on the signals fusion obtained from the iner-
tial measurement unit (IMU). The IMU measuring system provides information from a linear
acceleration sensors (accelerometers), the Earth’s magnetic field sensors (magnetometers) and
the angular velocity sensors (gyroscopes). Information about the object orientation is presented
in the form of direction cosine matrix whose elements are observed in the state vector of the
non-stationary Kalman filter. The vector components allow to determine the rotation angles
(roll, pitch and yaw) associated with the object. The resulting waveforms, for different rotation
angles, have no negative attributes associated with the construction and operation of the IMU
measuring system. The described solution enables simple, fast and effective implementation of
the proposed method in the IMU measuring systems.

Key words: direction cosine matrix, strapdown integration, IMU signals fusion, object
orientation.

1. Introduction

The problem of determining the orientation of an object in space addresses a lot of
aspects in many areas of life and learning. Object orientation is a very important element
of the overall control of autonomous unmanned vehicles (UAVs) [1, 2, 3, 4, 5, 6]. This
problem also appears in the robotics area as e.g. a definition of effector orientation of in-
dustrial manipulator, or the determination of the orientation parameters of all kinematic
chains [7]. Determination of orientation is also significantly important in many imple-
mentation of medical diagnosis support to enable efficient and objective measurement of
the parameters of disease with various motor dysfunctions of the human body [8, 9, 10].

This paper presents an idea of determining of an object orientation using inertial
measurment unit (IMU), built in microelectromechanical systems technology (MEMS),
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equipped with three triaxial measurement systems. To determine the parameters of rota-
tion, defined as the angles of roll, pitch and yaw, Kalman filter algorithm is used. This
algorithm pursues fusion signals available from the IMU measurement system. The pro-
posed solution bases on a linear non-stationary process model in which the observed
state is direction cosine matrix (DCM) [2, 3, 11]. This matrix defines direct object ori-
entation (IMU measurement system) relatively to the reference system. Analysis of the
individual components of the state vector makes it possible to restore the information to
change the rotation angles of the object with respect to the axes of the reference frame.

2. IMU measuring system

In this study IMU system (Fig. 1) records the signal from three triaxial sensors.
This sensors measure (in the system associated with a moving object) acceleration of
the object (accelerometer), the Earth’s magnetic field vector (magnetometer) and the
changes in time of the rotation angle around each axis (gyroscopes).

Figure 1. IMU used in the tests of the proposed algorithm for the orientation determining.

The Earth often stands for a stationary reference frame which defines the space navi-
gation system [2, 3, 6, 11]. Typical reference are frames XYZ in different ways related to
the Earth, such as ECI (Earth-Centered Inertial), ECEF (Earth-Centered, Earth-Fixed),
LTP (Local Tangent Plane) including: ENU (East-North-Up) and NED (North-East-
Down) [4, 3, 12]. In the presented approach, due to the intuitive definition and design
of the IMU (Fig. 1), the reference frame defines the orientation of the X-axis directed to
magnetic north and the Z-axis directed vertically upward from the surface of the Earth.
The base frame is therefore defined in the configuration NWU (North-West-Up) as Fig.
2 shows. The changing orientation of the moving system space is defined as a coordinate
frame of measuring element associated with the IMU. The coordinate frame determining
the object orientation in the navigation problems is often defined as the structure of the
RPY (Roll-Pitch-Yaw) [2, 3, 12], where the rotation of the axes X-Y-Z is defined ap-
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propriately as changing the angle of rotation (roll), tilt (pitch) and turning (yaw) [4, 11].

Figure 2. Definition of the NWU reference coordinate frame and angles ϕ−θ−ψ which define the object’s
rotation.

The resulting change of orientation around each axis of the reference frame can be
defined by the elementary rotation matrix around the X-Y-Z axes, respectively [4, 7, 9]:

RRRX (ϕ) =

 1 0 0
0 cos(ϕ) −sin(ϕ)
0 sin(ϕ) cos(ϕ)



RRRY (θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (1)

RRRZ (ψ) =

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


where ϕ,θ,ψ define the value of the rotation angle around the X-axis (roll), the Y-axis
(pitch) and Z-axis (yaw) of the RPY frame associated with the measuring IMU device,
expressed relatively to the NWU reference frame.

3. Rotation matrix

The transformation RRR ∈ SO(3) (Special Orthogonal group) [7, 13, 14, 15] defines
an orthogonal rotation tensor operator in three-dimensional space and has the following
characteristics:

RRR−1 = RRRT , RRRRRRT = RRRT RRR = III3×3, det(RRR) =±1. (2)



226 R. BIEDA, K. JASKOT

The case det(RRR) = −1 occurs when one of the base (space) forms a right-handed
coordinate frame and the second base forms a left-handed coordinate frame [13]. Such
a case is not considered in this paper because we discuss the situation where the second
base is formed by the rotation of the first base. The transformation matrix RRR therefore
determines the rotation transformation of the one three-dimensional space relative to the
other. In the inertial navigation, especially in aviation, the homogeneous transformation
matrix corresponding to the rotation of the ψ−θ−ϕ angles [6, 16] (by ϕ−θ−ψ angles
relative to the original/base NWU reference frame) can be defined by an elementary
rotation matrix around each axis (1). Rotation matrix defining the transformation of the
transition from the basic (fixed) NWU frame subject to the rotation RPY frame is defined
as follows [1, 4, 9, 11]:

RRRNWU
RPY = RRRZ (ψ)RRRY (θ)RRRX (ϕ) =

 cθcψ sϕsθcψ− cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ− sϕcψ

−sθ sϕcθ cϕcθ

 (3)

where cα = cos(α) ,sα = sin(α).
Rotation matrix (3) allows to specify the orientation of the object in the base NWU

frame using knowledge of the ϕ− θ−ψ angles and information about the object ex-
pressed in the IMU measurement frame. However, the inverse rotation transformation
in XYZ Euler angles (ϕ− θ−ψ) notation, can be defined as a rotation in the opposite
(inverse) direction around the axis ZYX of the primary (rotating) RPY frame associated
with the IMU measurement frame:

RRRRPY
NWU = RRRX (−ϕ)RRRY (−θ)RRRZ (−ψ) = RRRX(ϕ)−1RRRY (θ)−1RRRZ(ψ)−1 =

= RRRX(ϕ)T RRRY (θ)T RRRZ(ψ)T =

 cθcψ cθsψ −sθ

sϕsθcψ− cϕsψ sϕsθsψ + cϕcψ sϕcθ

cϕsθcψ + sϕsψ cϕsθsψ− sϕcψ cϕcθ

 (4)

where cα = cos(α) ,sα = sin(α).
The transformations (3) and (4) have the properties of rotation operators RRR ∈ SO(3),

and are often referred as the DCM [2, 3, 11]. Transformations (3), (4) and DCM are
associated with each other according to the following relationship:

RRRNWU
RPY =

[
111R 111P 111Y

]
=

 cNR cNP cNY

cWR cWP cWY

cUR cUP cUY

=

 111T
N

111T
W

111T
U


=
[

111N 111W 111U

]T
=
(
RRRRPY

NWU
)−1

(5)

where 111i is the i-th unit vector of the axis of the space frame, while the DCM matrix
coefficient ci j = 111T

i 111 j = cos(β) determines cosine of the angle between the i-th axis
NWU base frame and the j-th axis RPY measuring frame.
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4. Calculation of RPY object orientation

The IMU measurement system is constructed using the MEMS technology [1, 3,
17]. This system is equipped with three triaxial measurement systems defined in the
configuration of the reference frame associated with the fixed NWU coordinate frame of
the Earth.

4.1. Accelerometers

Model of the acceleration signal measured by the accelerometers system is defined
as the sum of the actual value of acceleration ãaa, gravity vector ggg and component vvva
modeling Gaussian white noise [8, 10]:

aaa = ãaa−ggg+ vvva (6)

Analyzing the ideal case (without noise), triaxial accelerometer system measures the

acceleration aaaA =
[

ax ay az

]T
as the projection of acceleration vector on the axes

of measurement frame in the RPY space [14, 16]:

aaaA =

 ax

ay

az

= RRRRPY
NWU (ãaa−ggg) (7)

where ãaa and ggg =
[

0 0 −g
]T

are: object acceleration vector and vector acceleration

of gravity
(
g≈ 9.81

[
m/s2

])
, respectively (see Fig. 3) expressed in the NWU reference

frame.

Figure 3. Position of the acceleration of gravity vector ggg and the Earth’s magnetic field vector bbb in the NWU
reference frame.

We assume that the value of acceleration associated with the object is negligibly
small (ãaa≈ 000) [18].
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Assuming that the value of the acceleration associated with the object movement is
negligibly small one may approximately assume that the accelerometer system measures
projection of the constant acceleration of gravity vector expressed in the IMU measure-
ment coordinate frame. Using the rotation operator RRRRPY

NWU the acceleration of gravity
vector ggg can be expressed in the RPY frame:

−gggRPY = RRRRPY
NWU (−ggg) =

 −sθg
sϕcθg
cϕcθg

≈
 ax

ay

az

= aaaA. (8)

Using equation (8), and the result of measurement aaaA from linear acceleration sensors
[18, 19] the values of the angles of object rotation roll (ϕ) (9) and pitch (θ) (10) can be
determined as follows:

sϕcθg = ay

cϕcθg = az

}
⇒ tan(ϕ) =

ay

az
⇒ ϕ = arctan

(
ay

az

)
(9)

−sθg = ax⇒ sin(θ) =
ax

−g
⇒ θ = arcsin

(
−ax

g

)
(10)

or using the property
√

a2
y +a2

z = cθg:

−sθg = ax√
a2

y +a2
z = cθg

}
⇒ tan(θ) =

−ax√
a2

y +a2
z

⇒ θ = arctan

 −ax√
a2

y +a2
z

 . (11)

To ensure the distinguishability of the results of the calculation of the angle, one should
use the arctan2 (two-arguments arctangent) which returns an angle in the range ±π:

ϕ = arctan
(

ay

az

)
⇒{ϕ∼±π}⇒ ϕ = arctan2(ay,az) . (12)

Analysis based on the values returned by the accelerometer system cannot determine all
three rotation angles of RPY. In order to determine the angle yaw, using of the magnetic
compass system implemented by the three-axis magnetometer is required.

4.2. Magnetometers

The signal measured by the magnetometer system is modeled as the sum of the
Earth’s magnetic field vector b̃bb and vvvm modeling white noise measurement [8]:

mmm = b̃bb+ vvvm. (13)

The triaxial magnetometer system used in the IMU, measures the projection of the

Earth’s magnetic field vector b̃bb =
[

Bcos(γ) 0 −Bsin(γ)
]T

in the object RPY co-
ordinate frame. The angle γ defines the inclination of the magnetic field vector of the



DETERMINATION OF AN OBJECT ORIENTATION IN 3D SPACE USING
DIRECTION COSINE MATRIX AND NON-STATIONARY KALMAN FILTER 229

reference frame on XY plane. The value of this angle varies depending on the latitude
from 0 [deg] on the equator to ±90 [deg] on the magnetic poles. Similarly, the magnetic
field strength B is dependent on the latitude. In order to make scaling process indepen-
dent on the magnetometer measuring on the intensity of the Earth’s magnetic field, the
value of the intensity magnetic field vector is normalized (∥bbb∥ =

∥∥∥ b̃bb
B

∥∥∥ = 1) [10]. Con-
struction of the IMU magnetometer sensor is compatible with the configuration of the
base NWU coordinate frame of the Earth (Fig. 3). Therefore, the triaxial magnetome-

ter measures projections mmmM =
[

mx my mz

]T
of normalized magnetic field vector

bbb =
[

cos(γ) 0 −sin(γ)
]T

[16] in the RPY frame [8, 14]:

mmmM = RRRRPY
NWU bbb = RRRX(ϕ)T RRRY (θ)T RRRZ(ψ)T bbb. (14)

Transforming the above relation, we obtain [20]:

RRRY (θ)RRRX (ϕ)mmmM = RRRZ(ψ)T bbb = bbbr =

=

 cθmx + sϕsθmy + cϕsθmz

cϕmy− sϕmz

−sθmx + sϕcθmy + cϕcθmz

=

 cθcγ

−sθcγ

−sγ

=

 br
x

br
y

br
z

 . (15)

From the comparison of corresponding output vector elements [19] we obtain the depen-
dence on the value of the yaw angle (ψ) [20]:

cθcγ = br
x

−sθcγ = br
y

}
⇒ tan(ψ) =

−br
y

br
x

=
−
(
cϕmy− sϕmz

)
cθmx + sϕsθmy + cϕsθmz

⇒ ψ = arctan
(

sϕmz− cϕmy

cθmx + sϕsθmy + cϕsθmz

)
.

(16)

Similarly to the case of determining the value of the roll angle (12) in determining the
value of the yaw angle we use two-arguments arctangent:

ψ = arctan
(

sϕmz− cϕmy

cθmx + sϕsθmy + cϕsθmz

)
⇒{ψ∼±π}

⇒ ψ = arctan2
((

sϕmz− cϕmy
)
,
(
cθmx + sϕsθmy + cϕsθmz

))
.

(17)

Because of the noise occurring in the accelerometers (6) and magnetometers (13) mea-
surement systems values which determine rotation angles change rapidly. It is then often
low pass filtering applied while determining roll, pitch and yaw angles. It aims at elimi-
nating noise in the designated values of the angles resulting from the noise presented in
the signals measured in the IMU system. The angles of rotation defined by the strapdown
integration of the signal from the gyroscopes do not cause such a problem.
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4.3. Gyroscopes

The third system of sensors used in the IMU is triaxial gyroscope. The signal mea-
sured by the gyroscopes system is modeled by the sum of angular velocity vector ω̃ωω, bias
vector βββ and white noise vvvω [8, 16]:

ωωω = ω̃ωω+βββ+ vvvω. (18)

In the ideal case (without bias and distortion) gyroscopes return information about
the variation of the rotation angle around the axis of the rotating RPY frame. As the
result, the signal from the gyroscopes can be defined as the angular velocity vector

ωωωG =
[

ωx ωy ωz

]T
for each axis of the IMU measurement system. Using infor-

mation about the homogeneous transformation matrix RRRNWU
RPY (3):

RRRNWU
RPY =

 cθcψ sϕsθcψ− cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ− sϕcψ

−sθ sϕcθ cϕcθ

=

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (19)

the object rotation angles roll, pitch and yaw can be determined from a comparison of the
respective elements (row,column) of the matrix (19) [1]. The comparison of elements
(3,2) and (3,3) gives the angle of roll:

sϕcθ = r32

cϕcθ = r33

}
⇒ tan(ϕ) =

r32

r33
⇒ ϕ = arctan

(
r32

r33

)
. (20)

Comparison of element (3,1) can be determined by the pitch angle:

−sθ = r31⇒ sin(θ) =−r31⇒ θ = arcsin(−r31) (21)

or using the property
√

r2
32 + r2

33 = cθ:

−sθ = r31√
r2

32 + r2
33 = cθ

}
⇒ tan(θ) =

−r31√
r2

32 + r2
33

⇒ θ = arctan

 −r31√
r2

32 + r2
33

 . (22)

The yaw angle value is obtained from the comparison of components (1,1) and (2,1):

cθsψ = r21

cθcψ = r11

}
⇒ tan(ψ) =

r21

r11
⇒ ψ = arctan

(
r21

r11

)
. (23)

Similarly to results obtained from the accelerometers and the magnetometers, the range
of variation angle provides uniqueness of the solution [4]. To determine the angles ϕ and
ψ we have used the arctan2(Y,X) function which returns the angle in the range ±π:

ϕ = arctan
(

r32

r33

)
⇒{ϕ∼±π}⇒ ϕ = arctan2(r32,r33) (24)
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ψ = arctan
(

r21

r11

)
⇒{ψ∼±π}⇒ ψ = arctan2(r21,r11) . (25)

5. The equation of rotation motion

The equations (20), (22) and (23) describe angles which can be determined us-
ing the rotation matrix RRRNWU

RPY (3). The angular velocity vector ωωωG can be treated as a
pseudo-rotation vector [2]. The IMU system (RPY coordinate frame) is rotated around
this pseudo-rotation vector as Fig. 4) shows.

Figure 4. Seeming rotation of the NWU reference frame in response to rotation of the RPY measuring frame
around the pseudo-rotation vector ωωωrot .

Rotation of the RPY frame associated with the object (rotating frame - rot) seen in
the IMU system generates a seeming rotation of the NWU reference frame associated
with the Earth (non-rotating frame - non) in the direction opposite to the direction defined
by the pseudo-rotation vector ωωωrot . Denote by CCCrot

non direction cosine matrix (rotation
matrix) defining the transformation of the moving (rot) frame to the stationary (non)
frame to determine the relationship of the rotation matrix (4):

RRRRPY
NWU =

[
111N 111W 111U

]
=CCCrot

non =
[

111non
x 111non

y 111non
z

]
. (26)

Using pseudo-rotation vector ωωωrot and right-hand rule, it can be shown that the linear
velocity versors of axis stationary frame (NWU), caused by seeming rotation of this
frame are set by the formula [2]:

d
dt 111non

x =−ωωωrot ×111non
x

d
dt 111non

y =−ωωωrot ×111non
y

d
dt 111non

z =−ωωωrot ×111non
z .

(27)
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Using (26) it can be shown that the change in time, the rotation operator CCCrot
non is deter-

mined by the relation:

d
dt

CCCrot
non =

[
d
dt 111non

x
d
dt 111non

y
d
dt 111non

z

]
. (28)

Using the equations of linear velocities (27) it can be shown the following relationship
between the rotation of pseudo-rotation vector ωωωrot [13] and the change in the rotation
matrix (28):

d
dt

CCCrot
non =

[
−ωωωrot ×111non

x −ωωωrot ×111non
y −ωωωrot ×111non

z

]
=

=−ωωωrot ×
[

111non
x 111non

y 111non
z

]
=−

[
ωωωrot×

]
CCCrot

non

(29)

where [ωωωrot×] is skew-symmetric matrix [13] (the cross-product operator). Assuming
that the pseudo-rotation vector is equal to the vector angular velocities measured by the

gyroscopes system: ωωωrot =
[

ωx ωy ωz

]T
= ωωωG, the skew-symmetric tensor with

axial vector ωωωrot [13] is defined as follows [1, 2, 3, 21, 15]:

[
ωωωrot×

]
=

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (30)

The equations defining the angles roll (24), pitch (21, 22) and yaw (25) use information
about the elements of the transformation matrix RRRNWU

RPY of the reference NWU frame
(non-rotating frame - non) to the RPY frame (rotating frame - rot) associated with the
movable object. We can denote this as a DCM transformation CCCnon

rot :

RRRNWU
RPY =

[
111R 111P 111Y

]
=CCCnon

rot . (31)

Using the properties of orthogonal rotation tensor RRR (2):

CCCnon
rot =

(
CCCrot

non
)−1

=
(
CCCrot

non
)T (32)

and equation (29) we can determine the equation for generating the rotation of the direc-
tion cosine matrix CCCnon

rot [1, 2]:

d
dt

CCCnon
rot =

d
dt

(
CCCrot

non
)T

=

(
d
dt

CCCrot
non

)T

=
(
−
[
ωωωrot×

]
CCCrot

non
)T

=

=−
(
CCCrot

non
)T [ωωωrot×

]T
=CCCnon

rot
[
ωωωrot×

]
.

(33)

Assuming, as before, that ωωωrot = ωωωG and using relation (31) we can show that equation
(33) takes the following form [6, 10]:

d
dt

RRRNWU
RPY = RRRNWU

RPY
[
ωωωG×

]
(34)
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where
[
ωωωG×

]
is skew-symmetric matrix as in (30).

In order to determine the rotation matrix CCCnon
rot (RRRNWU

RPY ) one needs to solve differential
equation (33, 34). One possibility is to define an approximate solution [21] based on
the replacement of the derivative operation by operation of the finite difference in time
period ∆t [1, 11]:

d
dt

CCCnon
rot (t) = ĊCC

non
rot (t) = lim

dt→0

CCCnon
rot (t +dt)−CCCnon

rot (t)
dt

≈ CCCnon
rot (t +∆t)−CCCnon

rot (t)
∆t

. (35)

Using (35) an iterative formula can be derived to determine the matrix CCCnon
rot (t) in suc-

cessive moments of time:

CCCnon
rot (t +∆t) =CCCnon

rot (t)+ĊCC
non
rot (t)∆t (36)

where ∆t is the period between discrete moments of time (the sampling period in the
IMU system).

For small rotation angles α∈ {ϕ,θ,ψ} one can assume that sin(α)≈α and cos(α)≈
1 [21]. As the result, the rotation matrix CCCnon

rot (RRRNWU
RPY ) (3) can be approximated as follows

[1, 12, 11]:

CCCnon
rot (t)≈

 1 −ψ θ
ψ 1 −ϕ
−θ ϕ 1

 (37)

Based on the approximate form of rotation matrix (37) sequence generating rotation (33,
34) can be expressed as follows [11]:

ĊCC
non
rot (t)≈CCCnon

rot (t)

 0 −ψ̇ θ̇
ψ̇ 0 −ϕ̇
−θ̇ ϕ̇ 0

 . (38)

Using approximation (38), and taking into account the relationship:

α̇(t) =
dα(t)

dt
= ω(t)≈ α(t +∆t)−α(t)

∆t
=

∆α(t)
∆t

(39)

the component of updating solution in equation (36) takes now the form [1]:

ĊCC
non
rot (t)∆t ≈CCCnon

rot (t)

 0 −ψ̇ θ̇
ψ̇ 0 −ϕ̇
−θ̇ ϕ̇ 0

∆t ≈CCCnon
rot (t)

 0 −∆ψ ∆θ
∆ψ 0 −∆ϕ
−∆θ ∆ϕ 0

=

=CCCnon
rot (t)

[
ωωωrot×

]
∆t =CCCnon

rot (t) [AAA×]
(40)
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where [AAA×] is skew-symmetric matrix:

[AAA×] =

 0 −ωz∆t ωy∆t
ωz∆t 0 −ωx∆t
−ωy∆t ωx∆t 0

 . (41)

Using these relationships, and information obtained from the measurement system of
gyroscopes, equation (36) which defines the rotation matrix RRRNWU

RPY can be denoted in the
form [8, 22]:

RRRNWU
RPY (t +∆t) = RRRNWU

RPY (t)
(
III3×3 +[AAA×]

)
= RRRNWU

RPY (t)ΩΩΩ (42)

where:

ΩΩΩ =

 1 −∆ψ ∆θ
∆ψ 1 −∆ϕ
−∆θ ∆ϕ 1

= III3×3 +[AAA×] =

 1 −ωz∆t ωy∆t
ωz∆t 1 −ωx∆t
−ωy∆t ωx∆t 1

 . (43)

The rotation angles ϕ,θ,ψ determined from the RRRNWU
RPY matrix obtained as a result of

the integration process do not change so rapidly as in the case of noise vvvω influence on the
angular velocities vector ωωωG (18). In contrast to the rotation angles determined from the
accelerometers and magnetometers, the angles determined from the gyroscopes are de-
void of the element "nervousness" in the time course. However, the bias βββ (18) presented
in the signal obtained from the gyroscopes is cumulated in the process of integration.
This results in a slow but continuous change in the designated of rotation angles. The
resulting phenomena is the "flow" of the values of angles. Both of the values of angles
determined from the measurements of the gyroscopes and accelerometers and magne-
tometers systems are specific to the measurement system errors. One way of correcting
the rotation angles is to design the so-called complementary filter [5, 9, 16, 22, 23, 24].
However, often the correction process is implemented as a fusion of signals containing
information about the orientation of the different sources of measurement. This process
is performed using the algorithm of the observer which is constituted by the Kalman
filter. It allows the estimation of unmeasured signals based on the available signals and
process model.

6. The signals fusion

Kalman filter [1, 2, 3] is a basic mathematical tool which allows observation of im-
measurable signals using available measurements and process model. In the problem
of determining the object orientation measurable quantities are the signals from the ac-
celerometers aaaA (8), magnetometers mmmM (14) and gyroscopes ωωωG (18). When measuring
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using the IMU we are dealing with a discrete process in which measurements are avail-
able at certain period of time ∆t. For this type of problems the Kalman filter system
is described by a discrete model [25] equation of state changes (process equation) and
output equation (measurement equation) [8, 9]:

xxxk = FFFxxxk−1 + vvvk

yyyk = HHHxxxk +wwwk
(44)

where FFF and HHH are the matrices of the model of state and output equations, xxxk ∈ℜn and
yyyk ∈ℜm are the state vector and the output vector (measured) at k = 1/∆t, vvvk ∈ℜn and
wwwk ∈ ℜm are, respectively, the distortion and measurement noise modeled as a random
value with zero expected value E [vvv] = E [www] = 000 and variance VVV = E

[
vvvvvvT
]

and WWW =

E
[
wwwwwwT

]
. The process of determining the state vector (observed value) can be divided

into two stages:

• the prediction step, wherein the state and covariance matrix estimation is made on
the basis of the process model:

x̂xxk|k−1 = FFFx̂xxk−1|k−1

PPPk|k−1 = FFFPPPk−1|k−1FFFT +VVV
(45)

where x̂xxk ∈ℜn is the predicted estimate of the process state, and PPP is the covariance
matrix;

• the correction stage in which the correction of the state and covariance matrix
estimate bases on the measurement:

KKKk = PPPk|k−1HHHT (HHHPPPk|k−1HHHT +WWW
)−1

,

x̂xxk|k = x̂xxk|k−1 +KKKk
(
yyyk−HHHx̂xxk|k−1

)
,

PPPk|k = (III−KKKkHHH)PPPk|k−1

(46)

where KKKk is the gain matrix of the Kalman filter.

Due to the properties of the measuring system, the fusion of information obtained
from accelerometers and gyroscopes affected by bias is implemented. Difficulties in
reconstruction of rotation angles directly from measurements of angular velocities often
cause the representation of rotation operations by the quaternions description [1, 2, 3,
4, 6, 7, 9, 16, 26, 15]. Another approach to the information fusion process is the use of
so-called complementary Kalman filter [8, 12, 14, 19, 23, 25, 27]. Unlike the classical
approach in the complementary Kalman filter, state vector is not observed. The only
observed are values of errors.

In the proposed solution, the Kalman filter was used in its classical form directly
based on the state vector (observed value). In contrast to the solutions of the problem, in
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the proposed approach the rotation angles ϕ− θ−ψ are estimated implicitly using or-

thogonal tensor rotation matrix. Angles αααAM =
[

ϕAM θAM ψAM
]T

calculated from
the measurements of the accelerometers (12, 10, 11) and the magnetometer (17) have a
short-duration variation resulting from the noise occurring in the measurement system.
As the result, the elements of the matrix RRRRPY

NWU (4) determined from the rotation angles
αααAM characterize "nervousness". It consists of small and temporary changes in value
even if the orientation of the object and the associated IMU system do not change. Also
matrix RRRNWU

RPY (3) determined in the process of strapdown integration (42) of the angu-
lar velocity ωωωG changes slowly due to the error occurring in the measurement system
of gyroscopes (18). This change results from a "flow" of the rotation angles calculated
on the basis of the obtained angular velocities. As the result, the rotation matrix RRRNWU

RPY
conatins unmeasurable values and costitutes the process state in the proposed estimation
algorithm. It contains information about the rotation angles of the object relatively to the
reference frame. Due to the process model described by equation (44) rotation matrix
RRRNWU

RPY is transformed into the state vector in the following way:

RRRNWU
RPY =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

⇒ rrr =
[

r11 r12 r13 r21 r22 r23 r31 r32 r33

]T
.

(47)
Using equation (42) the connection between successive rotation coefficients ri j of the
vector can be expressed by the equation:

RRRNWU
RPY (k+1) =

 r11,(k+1) r12,(k+1) r13,(k+1)

r21,(k+1) r22,(k+1) r23,(k+1)

r31,(k+1) r32,(k+1) r33,(k+1)

=

=

 r11,k r12,k r13,k

r21,k r22,k r23,k

r31,k r32,k r33,k


 1 −∆ψ ∆θ

∆ψ 1 −∆ϕ
−∆θ ∆ϕ 1


(48)

for k = 0,1,2, . . ., where the relationship between the discrete moment of measurement
k and the time t is as follows:

t = k∆t⇒ k =
t

∆t
. (49)
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Equation (48) defines the relationship between successive (in subsequent measurement
times k) coefficients values of rotation matrix:

r11,(k+1) = r11,k + r12,k∆ψ− r13,k∆θ
r12,(k+1) =−r11,k∆ψ+ r12,k + r13,k∆ϕ
r13,(k+1) = r11,k∆θ− r12,k∆ϕ+ r13,k

r21,(k+1) = r21,k + r22,k∆ψ− r23,k∆θ
r22,(k+1) =−r21,k∆ψ+ r22,k + r23,k∆ϕ
r23,(k+1) = r21,k∆θ− r22,k∆ϕ+ r23,k

r31,(k+1) = r31,k + r32,k∆ψ− r33,k∆θ
r32,(k+1) =−r31,k∆ψ+ r32,k + r33,k∆ϕ
r33,(k+1) = r31,k∆θ− r32,k∆ϕ+ r33,k

(50)

and formulates the process model for the Kalman filter. Using the relation (50) one can
define the following equivalent to the equation (48):

RRRNWU
RPY (k+1) =


 1 ∆ψ −∆θ
−∆ψ 1 ∆ϕ
∆θ −∆ϕ 1


 r11,k r21,k r31,k

r12,k r22,k r32,k

r13,k r23,k r33,k




T

=
((

III3×3 +[AAA×]
)T (

RRRNWU
RPY (k)

)T
)T

=
((

III3×3− [AAA×]
)(

RRRNWU
RPY (k)

)T
)T

.

(51)

Considering the above relation and the fact that the angular velocities are obtained at
discrete moments of measurement (49) ωωωG = ωωωG (t) = ωωωG

k equation (42) takes the form:

RRRNWU
RPY,k = RRRNWU

RPY,(k−1)ΩΩΩk =

(
ΛΛΛk

(
RRRNWU

RPY,(k−1)

)T
)T

(52)

where matrix ΛΛΛk is expressed by the relation:

ΛΛΛk=ΩΩΩT
k =
(
III3×3+[AAA×]k

)T
= III3×3−[AAA×]k=

 1 ωz,k∆t −ωy,k∆t
−ωz,k∆t 1 ωx,k∆t
ωy,k∆t −ωx,k∆t 1

 (53)

Equation (52) describes the process in the measurement system IMU. Along with the
definition of the state vector xxxk as in (47) it finally defines non-stationary linear model
of state changes equation for the Kalman filter:

xxxk = FFFkxxxk−1 + vvvk⇒ rrrk =

 ΛΛΛk 0003×3 0003×3

0003×3 ΛΛΛk 0003×3

0003×3 0003×3 ΛΛΛk

rrrk−1 + vvvk (54)
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where the process matrix FFFk is time varying and depends on the current value of the
angular velocity vector ωωωG

k and 000n×n is the zero matrix of dimension n× n. The output
(measured) signal can be defined on the base of the rotation matrix RRRRPY

NWU determined, at
the time k, with the rotation angles αααAM

k calculated from measurements of accelerometers
and magnetometers:

αααAM
k ⇒ RRRRPY

NWU,k⇒
(
RRRRPY

NWU,k
)T ⇒ rrrAM

k = yyyk. (55)

As the result, the measurement (output) equation model in the Kalman filter takes the
form:

yyyk = HHHxxxk +wwwk⇒ rrrAM
k = III9×9rrrk +wwwk (56)

where IIIn×n is the identity matrix of dimension n×n.
The results of the Kalman filtering using the model defined by equations (54) and

(56) are estimated unmeasurable coefficients of rotation matrix RRRNWU
RPY,k. Using the rela-

tions (20,21,22,23) and designed in such a way matrix one can find the rotation angles

ααα∗k =
[

ϕ∗k θ∗k ψ∗k
]T

.

7. Results of experiments

The experiments evaluating the estimation of the rotation angles obtained from the
proposed fusion signals algorithm and comparing the results with the reference signal
are described below. The evaluation was done using specially designed simulator of the
IMU measurement system. The simulator bases on the sensor system which models the
accelerometers, magnetometers, and gyroscopes respectively, using equations (6), (13)
and (18). The exemplary waveform variation of rotation angles was chosen as follows:

ϕ(t) = 100sin(0.45t +2) [deg]
θ(t) = 45sin(3t +0.8) [deg]
ψ(t) = 120sin(t) [deg] .

(57)

The equations (57) allow to generate waveforms indicated by the accelerometers, mag-
netometers and gyroscopes. According to earlier imposed assumptions, simulated object
does not introduce additional value of linear acceleration (ãaa ≈ 000). The values of bias
appearing in the model system of gyroscopes in the simulation were set at 0.6 [deg/s]:

βββ =
[

0.6 0.6 0.6
]T

. (58)

The measurement noise which appears in the sensor model equations was generated us-
ing a random number generator with normal distribution, zero mean value and variances
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as follows:

E
[
vvvavvvT

a
]
= 0.5III3×3

E
[
vvvmvvvT

m
]
= 0.01III3×3

E
[
vvvωvvvT

ω
]
= 0.1III3×3

(59)

Fig. 5 shows the waveforms of each rotation angles determined from simulated measure-
ments of accelerometers, magnetometers αααAM

k (12,11,17) and gyroscopes αααG
k (24,22,25)

for equation (57). The angles αααG
k were determined by the rotation matrix RRRNWU

RPY obtained
from strapdown integration (42) of the measurement signal from the gyroscopes. It is
also presented the waveforms rotation angles ααα∗k determined from the estimated rotation
matrix elements using the proposed solution. In order to emphasize effect of measure-
ment noise and bias on the course determined rotation angles of the accelerometer and
magnetometer measurements and gyroscopes are presented only towards the first ten and
last ten seconds of the simulation.

Figure 5. Waveforms of reference and estimated values of the rotation angles (the first and last ten seconds
of simulation) - simulation experiment.

In order to assess the quality of the estimation of the rotation angles, vector of the
MAE (Mean Absolute Error) is introduced:

MAE(α̂αα) = α̂ααε =
1
N

N

∑
k=1
|αααk− α̂ααk| (60)

where αααk =
[

ϕk θk ψk

]T
is the reference waveform and α̂αα ∈

{
αααAM,αααG,ααα∗

}
;

ϕ−θ−ψ denotes rotation angles determined from: measurements of accelerometers and

magnetometers αααAM
k =

[
ϕAM

k θAM
k ψAM

k

]T
, gyroscopes αααG

k =
[

ϕG
k θG

k ψG
k

]T

and the proposed non-stationary Kalman filter algorithm ααα∗k =
[

ϕ∗k θ∗k ψ∗k
]T

. Tab. 2
shows MAE values for the presented simulated waveform.

Part of the experiments were devoted to compare the results of estimation of the
rotation angles αααAM

k designated from accelerometers and magnetometers with the values
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Table 2. Mean Absolute Error for references and estimated rotation angles waveforms

MAE [deg] roll (ϕε) pitch (θε) yaw (ψε)

αααAM 2.7871 2.3201 5.6810

αααG 12.4582 15.6488 17.2366

ααα∗ 0.6329 0.6845 1.0741

of the angles αααG
k designated from the rotation matrix RRRNWU

RPY which in turn was obtained
by using measurements from the gyroscopes and strapdown integration. These results
were compared with the values of the angles ααα∗k designated from the rotation matrix
RRRNWU

RPY , represented as a state vector r̂rrk (47), which has been calculated from the signals
of the IMU sensor.

In the first experiment, successive rotation intervals in the range of about ±90 [deg]
was realized with respect only to one axis of the base frame. Respectively: around the
X axis (roll angle) in the time interval T1 ∼= (4÷15) [s], about the Y axis (pitch angle)
for T2 ∼= (19÷27) [s], and around the Z axis (yaw angle) to T3 ∼= (37÷50) [s]. Obtained
estimates of the rotation angle values are shown in Fig. 6 (left column).

For comparison, various estimates of the rotation angle show the waveforms of indi-
vidual angles obtained in three possible ways (Fig. 6 right column).

The aim of the next experiment was to verify behavior of the proposed solution if
the orientation of the IMU changes fast. These changes occurred simultaneously with
respect to all three axes of the reference frame. The results estimates of ϕ−θ−ψ rota-
tion angles for this test sequence are shown in Fig. 7 (left column). In order to assess the
quality of the estimates, they have been compared with the various rotation angles for
the time interval T4 = (10÷18) [s]. Compared angles were obtained from the accelera-
tion, magnetic field and gyroscopes sensor by using the proposed solution (Fig. 7 right
column).

8. Conclusion

In this paper, the orientation estimation algorithm based on the non-stationary
Kalman filter has been deeply analyzed. The analysis of the example waveforms (e.g
first experiment) leads to the conclusion that the angles determined using the proposed
solutions have a variation similar to the angles obtained from the accelerometers and
magnetometers, but are not fast time-varying what results from the component of noise
contained in the IMU measurement systems. As the result, the waveforms are much
less "nervous". It can be observed also that the resulting estimate rotation angles do not
drift which results from the bias in the measurement system of gyroscopes. By using
the Kalman filter in the proposed method, it was possible to eliminate the disadvantages
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Figure 6. Waveforms designated ϕ− θ−ψ (RPY) rotation angles (left column) and comparison of the
individual rotation angles (right column) for the accelerometer and magnetometer (AM), gyroscopes (G)
and signals fusion from the IMU - first experiment.

of the solution of the estimate of rotation angle using acceleration, angular velocity and
magnetic field sensors.

Analysis of the results of the second experiment confirms the conclusions observed
in the first one. It follows then that the proposed solution correctly determines angles of
rotation. At the same time, it does not have the drawbacks resulting from the construction
of IMU sensor.

The proposed solution allows fast and simple implementation on the platform of the
IMU measurement system. The state vector rrrk (47) is defined as a nine-element structure.
However, due to the nature of the definition of state equation (54) and the properties of
the matrix FFFk (size 9×9) analyzed solution can be decomposed into three subtasks of a
smaller dimensionality. The matrix state equation (54) is a block matrix with submatrix
ΛΛΛk (53) arranged diagonally. As the result, the state vector rrrk can be decomposed into
three subvectors rrri

k i ∈ {1,2,3} which define the rows of the rotation matrix RRRNWU
RPY :

RRRNWU
RPY =

[
rrr1 rrr2 rrr3

]T
⇒ rrri =

[
ri1 ri2 ri3

]T
(61)

for i = 1,2,3.
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Figure 7. Waveforms designated ϕ−θ−ψ (RPY) rotation angles (left column) and comparison of rotation
angles for part of waveforms (right column) for the system (AM), (G) and signals fusion from IMU - second
experiment.

Following the above modification, the proposed solution can be decomposed into the
three subtasks (simpler Kalman filter) based on the process model as:

xxxk = FFFkxxxk−1 + vvvk⇒ rrri
k = ΛΛΛkrrri

k−1 + vvvi
k

yyyk = HHHxxxk +wwwk⇒ rrri,AM
k = III3×3rrri

k +wwwi
k

(62)

Each subtask (62) allows the estimation of coefficients of i-th row (i = 1,2,3) of the
matrix RRRNWU

RPY . This decomposition lets a more efficient implementation of the proposed
solution on the hardware platform of the IMU measurement system. At the same time it
preserves the properties of the result as the proposed solution (54, 56).
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