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In many practical situations fluids are normally blended with additives (viscosity index improvers, 
viscosity thickeners, viscosity thinners) due to which they show pseudoplastic and dilatant nature 
which can be modelled as cubic stress model (Rabinowitsch model). The cubic stress model for 
pseudoplastic fluids is adopted because Wada and Hayashi have shown that the theoretical results 
with this model are in good agreement with the experimental results. The present theoretical analysis 
is to investigate the pseudoplastic effect along with the effect of rotational inertia on the pressure 
distribution, frictional torque and fluid flow rate of externally pressurised flow in narrow clearance 
between two curvilinear surfaces of revolution. The expression for pressure has been derived using 
energy integral approach.  To analyse and discuss the effects of pseudoplasticity and fluid inertia on 
the pressure distribution, fluid flow rate and frictional torque, the examples of externally pressurised 
flow in the clearance between parallel disks and concentric spherical surfaces have been considered. 

Keywords: curvilinear bearings, externally pressurized flow, Rabinowitsch fluid model, inertia 
effect 

1. INTRODUCTION 

In many practical lubrication applications, the classical Newtonian theory is not a satisfactory 
engineering approach. Experiments show that the addition of small amounts of long-chained polymer 
additives to a Newtonian fluid can produce desirable lubricants. Such lubricants behave as non-
Newtonian pseudoplastic, dilatant and viscoelastic fluids according to the nature and quantity of 
additives. Dilatant fluids are not of much importance in practical use but the effect of pseudoplasticity 
on lubrication characteristics has recently taken on added significance with the move to yet lower-
viscosity lubricants for improved energy efficiency. In recent years, tribologists have done a great deal 
of work to increase the efficiency of stabilising properties of non-Newtonian lubricants by addition of 
small amounts of long chain polymer solutions such as polyisobutylene and ethylene propylene etc. 
The use of additives minimises the sensitivity of the lubricant to changes in the shearing strain rate. 
Further, the viscosity of these lubricants exhibits a non-linear relationship between the shearing stress 
and shearing strain rate. In last few decades, the rheological effects of non-Newtonian lubricants based 
on different fluid models such as power law and couple stress fluid model have been studied for the 
performance characteristics of journal, squeeze film, annular disks and externally pressurised bearings. 
The theoretical investigation of the problems of bearing lubrication and its performance using Non-
Newtonian lubricants was done by Giannikos and Buckholz (1988) for elastic bearings with non-
Newtonian power law fluids, (Khonsari and Brewe, 1989) for journal bearing with micropolar fluids, 



U. P. Singh, R. S. Gupta, V. K. Kapur, Chem. Process Eng., 2011, 32 (4), 333-349 

334 
 

Serangi et al. (2005) for ball bearing with couple stress fluid. The analysis of bearings’ performance 
with pseudoplastic fluids was done by Savins (1958) for flow in stationary pipes, (Cross, 1965) 
generating a new flow equation, (Hanks, 1979) for flow in concentric annuls,  (Hasmimoto and Wada, 
1986; Shukla and Prasad, 1982) on squeeze films, (Usha and Vimla, 2000) on squeeze film bearings 
and the analysis  of externally pressurised bearings was done by (Lin, 1999) on plane stepped plate 
bearing with couple stress model, (Jurczak et al., 2006; Walicka and Falicki, 2010a,2010b) on flow in 
the clearance between the two curvilinear surfaces of revolution with Casson and Herschel–Bulkley 
and couple stress fluid models. But the problem of pressurised flow in the clearance between the two 
curvilinear surfaces of revolution considering the inertia effect using pseudoplastic fluid - Rabinowitsch 
fluid model to establish the non-linear relationship between the shearing stress and shearing strain rate 
is yet to be considered. 

In the Rabinowitsch fluid model, the following empirical relation holds for one dimensional fluid flow: 

 3 u
xz xz z

τ κτ μ
∂

+ =
∂

 (1) 

where μ  is the zero shear rate  viscosity, κ  is the non-linear factor responsible for the non-Newtonian 
effects of the fluid which will be referred to as coefficient of pseudoplasticity in this paper. This model 
can be applied to Newtonian lubricants for κ = 0, to dilatant lubricants for κ < 0, and to pseudoplastic 
lubricants for κ > 0. The experimental analysis of this model for the lubricants for journal bearing has 
been justified by (Wada and Hayashi, 1971) indicating the film pressure and load capacity for these 
lubricants is smaller than those of the Newtonian fluids. Afterwards, the theoretical study of bearing 
performance with non-Newtonian lubricants using this model was done by (Bourging and Gay, 1984) 
on Journal bearing, (Hsu and Saibel, 1965; Lin, 2001) on slider bearing, (Hashmimoto and Wada, 
1986) on circular plates bearing and Hung (2009) on infinitely wide parallel rectangular plates. 
However, none of the investigators has focused their attention to study theoretically, the problem of 
isothermal, incompressible laminar flow lubricant for externally pressurised bearings taking into 
account the Rabinowitsch fluid model. 

In the present paper, effects of pseudoplasticity and inertia in the pressurised flow of a non-Newtonian 
fluid between two curvilinear surfaces of revolution have been investigated using Rabinowitsch fluid 
model. Since the problem is of non-linear nature in its theoretical investigation, the energy integral 
approach presented by (Elkouh, 1967) and established by (Kapur and Verma, 1973) is used to calculate 
pressure, load capacity and frictional torque. 

2. CONSTITUTIVE EQUATIONS AND BOUNDARY CONDITIONS 

The physical configuration of externally pressurised flow in the clearance between two curvilinear 
surfaces of revolution is shown in Fig. 1. The radius of revolution of the outer surface is r(x) and the 
clearance between the two surfaces of revolution is h(x). In Fig. 1, an intrinsic curvilinear orthogonal 
coordinate system x, , z is also shown. The lubricant in the system is taken as non-Newtonian. The 
body forces and body couples are assumed to be absent. Under the assumptions of hydrodynamic 
lubrication applicable to thin film as considered by (Cameron, 1996; Pinkus & Sternlitch, 1961)  and 
the assumptions of thin films in curvilinear coordinate used and discussed by (Jurczak et al., 2006),  the 
field equations governing the one dimensional motion of an incompressible non-Newtonian fluid - 
Rabinowitsch fluid model in curvilinear co-ordinate system are: 

 
1

[ ( ) ] 0
( )

r x u
r x x
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Fig. 1. Schematic diagram of curvilinear clearance between two surfaces of revolution 
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where r'(x) is the derivative of r(x) with respect to x. 

Equations (2) - (4) are solved under the following boundary conditions: 

 u = 0          at z = 0,h (6) 

 v = 0          at z = 0 (7) 

 v = r(x)ω    at z = h (8) 

 p = p0       at x = x0 (9) 

 p = 0        at x = xR (10) 

where u & v are the velocity components of flow as shown in Figure 1, ω is the angular velocity of 
inner surface, ρ is density of fluid, p is film pressure between bearing surfaces and τxz is shearing stress. 

Introducing the dimensionless quantities 
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the field equations, Equation (1) to Equation (5), are transformed to  
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and the related boundary conditions (6) to (8) take the form: 

 0u =%           at    0,z h= %%  (16) 

 0v =%           at    0z =%  (17) 

 ( )v r x=% % %       at    z h= %%  (18) 

 1p =%          at    ox x=% %  (19) 

 0p =%         at    1x =%  (20) 

2.1. Analysis 

The solution for Equation (12) satisfying Equation (11) and the boundary conditions (16) ignoring the 
inertia effects is  
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 (21) 

From the continuity of flow equation (11), the rate of change of film pressure p

x

∂

∂

%

%
 without inertia effect 

can be approximated, in terms of radial flow rate Q% , as 
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Substituting this expression for 
p

x

∂
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%
 from Equation (22) in Equation (21), velocity profile for u%  without 

the inertia effect is as 
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where 
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The circumferential velocity v can be found by integrating Equation (13) under the boundary 
conditions (17) and (18) as 
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h
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 (25) 

Multiply Equation (12) by ( )r x u% % %  and integrating the resulting expression from 0z =%  to z h= %% , the 
following expression is obtained using Energy Integral Method (Elkouh, 1967; Kapur and Verma, 
1973) 
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Using Equations (23) – (26) the rate of change of modified pressure in x direction with inertia 
effect is obtained as: 
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3. EXAMPLES OF APPLICATIONS 

For the presentation of work done here, two examples of parallel plates bearings and concentric 
spherical bearings are taken into consideration. 

3.1. Plane parallel plates 

Taking the following transformations of the parameters 
( ) , , ,x r x r x R x r ho oR= = = =  = constant clearance, 

, ( ) , '( ) 1x r x r x r r xo o= = = =% % % % % % % % , 
the curvilinear bearing (as shown in Fig. 1.) can be considered as the plane parallel plates shown in Fig. 
2. 

 
Fig. 2. Schematic diagram clearance between two parallel disks 
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With these simplifications, Equation (27) becomes 
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Integrating Equation (28) under boundary conditions 
1p =%   at  r ro=% %  
0p =%   at  1r =%  

the expression for pressure distribution is obtained as 
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for 1r ro ≤ ≤% %  

3.2. Concentric spherical surfaces 

Taking the following transformations of the parameters 
2 ( )
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x x

π π
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θ
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% %
  and h% = constant clearance, 

the curvilinear bearing (as shown in Fig. 1.) can be considered as the concentric spherical surfaces 
shown in Fig. 3. 

 

 

Fig. 3. Schematic diagram of clearance between two concentric spherical surfaces 
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In this case, Equation (27) becomes 
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where 

 
3 3162

( ) 6 3 3 75( ) ( )

Q Q
f

Sin h Sin h

μ μ
θ α

θ θ
= − +

% %% %

% %
 (31) 

Integrating Equation (30) under boundary conditions 
1p =%   at  oθ θ=  

0p =%   at 2
πθ =  

the expression for pressure distribution, leaving the terms that have order less than 10-8, is obtained as 
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for 2o πθ θ≤ ≤  

4. LUBRICANT FLOW RATE 

4.1. Plane parallel plates 

From the equation of pressure distribution Equation (29) and the related boundary conditions, the 
nonlinear expression for radial flow rate ( )Q% is obtained as 
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4.2. Concentric spherical surfaces 

From the equation of pressure distribution equation (32) and the related boundary conditions, the 
nonlinear expression for flow rate ( )Q% is obtained as 
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For the analysis, the numerical value of Q%  can be obtained by Newton–Raphson formula 
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Taking appropriate initial value (eg. 0Q =% ), accuracy of order 10-8 in the numerical value of Q% is 
obtained in two or three iterations. In the present analysis, convergence of order 10-12 is checked and 
selected by using Mathematica 7.0 which is sufficient accuracy for the analysis and discussion. 

5. FRICTIONAL TORQUE 

The frictional torque of the bearing shown in Fig. 1. is given by the following formula 

 
2
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It takes the dimensionless form 
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where 3 .
N R
ττ

μ ω
=%  

6. RESULTS AND DISCUSSIONS 

To study non-Newtonian and fluid inertia effects on the pressure and flow rate of externally pressurised 
flow between two curved surfaces of revolutions, numerical results for pressure and radial flow rate 
have been obtained for different values of parameter of pseudoplasticity, 2( )Poα α κ=  within the valid 
range of convergence of numerical solution procedure.  Further, in order to prove the practical 
applicability of the problem, the value of pseudoplasticity parameter α is taken within 0 1500α≤ ≤  
based on the actual experimental results of (Wada & Hayashi, 1971) for coefficient of pseudoplasticity 
κ  and viscosity μ and (Coombs and Dowson, 1964) for supply pressure Po. The ranges of the 
coefficient μ  and supply pressure Po are: 
• coefficient of pseudoplasticity (κ): 2⋅10-6 - 6⋅10-6  m4/N2 
• supply pressure (Po): 1.6⋅104 N/m2 

Further, in all the graphs, the values of pseudoplasticity coefficient κ (m4/N2) have been shown in small 
braces with the values of pseudoplasticity parameter α to improve the applicability of the paper. 

To obtain and analyse the numerical results for pressure distribution, and flow rate and to avoid the 
effect of cavitation, the value of speed parameter S is selected in the range 0 ≤ S ≤ 0.5for plane parallel 
plates and 0 ≤ S < 1 for spherical case. 

6.1. Case of plane parallel plates 

Fig. 4. and Fig. 5. show the variation of dimensionless pressure distribution with respect to the 
radius of the bearing for different values of fluid parameter (hence with κ) and rotation 
parameter . The pressure for α = 0 (i.e. κ = 0) obtained by the present methodology agrees 
with the Dowson’s experimental and theoretical results up to a sufficient degree of accuracy 
due to which the pressure curves for (α = 0) overlap the Dowson’s experimental and theoretical 
results (Coombs and Dowson, 1964). It is observed that the pressure for pseudoplastic fluids  
(α > 0) is higher than that with Newtonian fluids (α = 0) at each value of r%  and every value of 
rotation parameter S. 

Moreover, the pressure for pseudoplastic fluids increases with the increase of the fluid parameter α. 
Since, the supply pressure (Po) is constant, the pressure for pseudoplastic fluids increases with the 
increase of the rheological parameter κ. However, the difference in the pressure distribution with the 
Newtonian and pseudoplastic fluids is small in the case of no rotation and the difference increases as 
the rotation increases. The variation of pressure from Newtonian to pseudoplastic fluids is also 
dependent on the film thickness. The larger the film thickness, the higher is the variation of pressure 
due to pseudoplasticity. As the bearings are merely operated at a high speed in practical situations, the 
effect of pseudoplastic fluids dominantly increases the pressure distribution – a result in agreement with 
(Hung, 2009; Lin, 2001; Usha and Vimla, 2000; Wada and Hayashi, 1971) and consistent with the real 
situation of the problem. 
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Fig. 4. Variation of pressure p%  in the clearance between parallel plates with radius of the plate r% for different 

values of fluid constant α and rotation parameter S. 0.001h =%  

 
Fig. 5. Variation of pressure p%  in the clearance between parallel plates with radius of the plate r% for different 

values of fluid constant α and rotation parameter S. 0.003h =%  
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Fig. 6. shows the variation of dimensionless frictional torque of the bearing with respect to the 
normalised viscosity Nμ μ μ=% and pseudoplasticity coefficient κ for different values of the 
dimensionless film thickness. It is observed that the frictional torque increases with the decrease of 
pseudoplasticity coefficient κ. Since the viscosity of the fluid increases and pseudoplasticity coefficient 
decreases with the amount of the additive (viscosity index improver), it is therefore concluded that the 
frictional torque increases with the increase of viscosity. The rate of variation of the dimensionless 
frictional torque also decreases with the increase of film thickness. 

 
Fig. 6. Variation of dimensionless frictional torque τ%  with normalised viscosity μ% in the case of plane parallel 

plates for different values of film thickness h%  

 
Fig. 7. Variation of dimensionless radial flow rate Q% in the clearance between parallel plates with normalised 

viscosity μ% and the fluid constant α for different values of rotation parameter S 
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Fig. 7. shows the variation of dimensionless flow rate with respect to the normalised viscosity 
Nμ μ μ=% and fluid parameter α (and corresponding κ) for different values of rotation parameter 

0, 0.3, 0.6,1.0S = . The flow curves with small circles show the variation of flow rate with respect to 
fluid parameter α (i.e. with κ) when the fluid viscosity is constant and the curves without circles show 
the variation of flow rate with respect to normalised viscosity μ% . It is observed that the flow rate 
decreases with the increase of viscosity for each value of rotation parameter S but it remains almost 
same with respect to fluid parameter α (i.e. with κ) if the viscosity remains constant. Thus, if the 
viscosity of the fluid does not vary, the flow rate has negligible variation with the pseudoplasticity of 
the fluid. 

6.2. Case of concentric spheres 

Fig. 8. and Fig. 9. show the variation of dimensionless pressure distribution with respect to the bearing 
angle θ (as shown in Fig. 3) for different values of fluid parameter α (hence with κ) and rotation 
parameter S. It is observed that the pressure in the case of pseudoplastic fluids (α > 0) is higher than 
that in the case of Newtonian fluids (α = 0)  at each value of θ  and every value of rotation parameter S. 
The pressure for pseudoplastic fluids increases with the increase of the fluid parameter α ( i.e. with κ). 
Further, the difference in the pressure distribution with the Newtonian and pseudoplastic fluids is small 
in the case of no rotation and the difference increases with the increase of rotation parameter S. At a 
speed (S = 0.95), the effect of pseudoplastic fluids significantly increases the pressure distribution 
which can be clearly seen from Fig. 9. However, with small film thickness 0.001h =% , the effect of 
pseudoplasticity on pressure distribution is observed to be small in comparison to the case of an 
average film thickness 0.003h =% . It shows that the effect of pseudoplasticity is also dependent on the 
film thickness which has been already discussed in the case of plane plates. It is also clear from the 
Figures 4, 5, 8 & 9 of pressure distribution that the effect of pseudoplasticity is more significant in the 
spherical case than the plane plates with the similar parameters and also,  the results agree in nature 
with (Hung, 2009; Lin, 2001; Usha and Vimla, 2000; Wada and Hayashi, 1971). 

 
Fig. 8. Variation of film pressure p%  in narrow clearance ( 0.001h =% ) between concentric spherical surfaces with 

angle θ for different values of fluid constant α and rotation parameter S 
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Fig. 9. Variation of film pressure p%  in average clearance ( 0.003h =% ) between concentric spherical surfaces with 

angle θ for different values of fluid constant α and rotation parameter S 

Fig. 10. shows the variation of dimensionless frictional torque generated due to the rotation of the 
bearing with respect to the normalised viscosity &Nμ μ μ κ=% for different values of the 
dimensionless film thickness. The variation of the frictional torque with the viscosity is similar as in the 
case of plane plates i.e. the dimensionless frictional torque increases with the increase of normalised 
viscosity and hence it decreases with the increase of pseudoplasticity coefficient κ. The frictional 
torque also decreases with the increase in film thickness. 

 

 
Fig. 10. Variation of dimensionless frictional torque τ%  with normalised viscosity μ% in the case of concentric 

spherical surfaces for different values of film thickness h%  
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Fig. 11. shows the variation of dimensionless flow rate with respect to the normalised viscosity 
Nμ μ μ=% and fluid parameter α (i.e. with κ) for different values of rotation parameter 

0, 0.3, 0.6,1S = . The flow curves with small circles show the variation of flow rate with respect to 
fluid parameter α  (and hence with κ) when the fluid viscosity is constant and the curves without 
circles show the variation of flow rate with respect to normalised viscosity μ% . The variation of flow 
rate in this case is also similar as in the case of plane parallel plates i.e. the flow rate decreases with the 
increase of viscosity for each value of rotation parameter S but it shows a negligible variation with 
respect to fluid parameter α (and hence with κ) for constant viscosity. 

 

 

Fig. 11. Variation of fluid flow rate Q%  in clearance between concentric spherical surfaces with  viscosity variation 
μ%  and the fluid constant α for different values of rotation parameter S 

From the discussions of Figures 4-11, it is clear that the effect of pseudoplasticity is attributable to the 
pressure distribution due to its nature of stress strain relationship. But, the effect of pseudoplasticity on 
the flow rate and frictional torque is due to the change of viscosity. 

It is further concluded that the effect of pseudoplasticity on pressure distribution is small in the case of 
no rotation (S = 0), but in the case of large values of S (i.e. high rotation or large R) the fluid inertia 
becomes significant and in this case the deviation of pressure distribution for pseudoplastic lubricant 
can be easily observed in both the cases of plane parallel plates and the concentric spherical surfaces. 

7. CONCLUSIONS 

The pseudoplastic effects of an isothermal incompressible non-Newtonian lubricant on the pressure 
distribution, frictional torque and flow rate of curvilinear bearings, neglecting the radial fluid inertia 
and cavitation effects, are presented with examples of plane parallel plates and concentric spherical 
surfaces. 
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The Rabinowitsch fluid i.e. cubic equation model is considered to derive the analytic expressions of 
pressure using the Energy Integral Method. The following conclusions are drawn: 
• The method is simpler and comprehensive because the formation of modified Reynolds equation 

can be avoided. 

• Comparing with the Newtonian case, the dimensionless film pressure distribution with the 
pseudoplastic lubricants is higher. Further, with the increase of the rheological parameter κ, there is 
an increase in the film pressure in both cases of the plane parallel plates and concentric spherical 
surfaces. 

• The effect of pseudoplasticity on the pressure distribution is small in the case of no rotation and 
increases with the rotation due to inertia effect. 

• The effect of pseudoplasticity is comparatively significant for pressure distribution with large 
radius R due to high inertia effect. 

• The flow rate of pseudoplastic fluids decreases due to increase of viscosity i.e. the effect of 
viscosity index improver – viscosity thickener decreases the flow rate. 

• The frictional torque of pseudoplastic fluids increases due to increase in viscosity i.e. the effect of 
viscosity index improver – viscosity thickener increases the frictional torque and hence the 
frictional torque in pseudoplastic case is always higher than in the Newtonian case. 

Hence, the variation of pressure distribution is dependent on the cubic stress nature of pseudoplastic 
fluids and the variations of the flow rate and the frictional torque are viscosity dependent. All the 
variations are consistent with the physical nature of the problem. 

SYMBOLS 

h  film thickness, m 

h%   
R

h
x

, - 

p  film pressure, N/m2 

p%  
o

p
P

, - 

oP   supply pressure, N/m2 
Q  fluid flow rate, m3/s 

Q%   ,Q
pRx O

2
R

N

π
μ  - 

R maximum outer radius of the surfaces, m 

r%   r
R

, - 

or%   ,or
R

- 

S  
2 23

20 o

R
P

ρ ω , - 

u%   u
Rω

, - 

v%   ,v
Rω

-  

, ,o o ox r θ  radius of supply hole, m 
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z%  
R

z
x

, - 

Greek symbols 
α 2 ,oPκ -  
κ coefficient of pseudoplasticity, m4/N2 
μ  viscosity of the fluid, kg/(m·s) 
μN  viscosity of Newtonian fluid, kg/(m·s) 

μ%  
N

μ
μ
% , -  

ρ density of fluid, kg/m3 
xzτ  shearing stress, N/m2 

τ frictional torque, N·m 

τ%  
32 N R

τ
πμ ω

, - 

xzτ%  ,xz

oP
τ -  

ω angular velocity of runner, rad/s 
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