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FREE VIBRATION OF PIEZO-NANOWIRES USING TIMOSHENKO
BEAM THEORY WITH CONSIDERATION OF SURFACE AND

SMALL SCALE EFFECTS

This paper investigates the influence of surface effects on free transverse vibra-
tion of piezoelectric nanowires (NWs). The dynamic model of the NW is tackled
using nonlocal Timoshenko beam theory. By implementing this theory with consid-
eration of both non-local effect and surface effect under simply support boundary
condition, the natural frequencies of the NW are calculated. Also, a closed form
solution is obtained in order to calculate fundamental buckling voltage. Finally, the
effect of small scale effect on residual surface tension and critical electric potential
is explored. The results can help to design piezo-NW based instruments.

1. Introduction

Nanowires hold great promise for a wide range of significant applications
such as sensors, actuators, transistors and resonators in high-precision nano-
electromechanical instruments [1, 2]. Because of the rising ratio of surface
area to volume at the nanoscale, the mechanical properties of NWs show
discrete size dependences [3, 4]. For the applications of NWs, both the axial
buckling and the transverse vibration are considered by large number of
researchers. Wang et al. showed that surface tension will considerably affect
the effective Young’s modulus of Al nanowires, which decrease with either
the reduction of nanowires thickness or the increase of the aspect ratio [5].
Khajeansari et al. investigated the bending response of nanowires consider-
ing both elastic substrate and surface effects. They employed Euler-Bernoulli
beam theory with a Winkler-Pasternak elastic type substrate medium [6].
Song et al. considered the effect of initial stresses in Young-Laplace Euler-
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Bernoulli beam model and they showed that it can significantly influence the
mechanical properties of nanowires [7]. Song and Huang studied the incre-
mental deformation theory for consideration of the surface stress effects in the
bending behavior of the nanowires and then the resonant shift predictions, by
using both the modified Euler-Bernoulli beam and the modified Timoshenko
beam theories [8]. Park quantified nanoscale surface stresses impact effect
on the critical buckling strains of silicon nanowires using the nonlinear finite
element method [9]. Olsson and Park presented responses from atomistic
simulations of gold nanowires under axial compression. They focused their
research on examining the effects of both axial and surface orientation effects
on the buckling behavior [10]. Gheshlaghi and Hasheminejad investigated
the nonlinear flexural vibrations of nanobeams in presence of surface ef-
fects within the framework of Euler–Bernoulli beam theory including the
von Kármán geometric nonlinearity and obtained an exact solution for free
vibration of nanobeams [11]. Yao and Yun investigated the effect of surface
elasticity on the Euler buckling of ZnO nanowires under axial compressive
loads and resulted that the surface elasticity has a significant effects on the
critical stresses for given buckling ZnO nanowires under different boundary
conditions [12]. Gheshlaghi and Hasheminejad adopted a sandwich-beam
model with two surface layers of finite thickness to investigate the reso-
nance frequency shift of moderately thick microbeams due to atom/molecule
adsorption in presence of surface effects using Timoshenko beam theory.
They obtained a framework for the optimal design of micro- and nano-
based beam sensors [13, 14]. Wang and Feng examined the axial buckling
and the transverse vibration of nanowires by using the refined Timoshenko
beam theory [15]. Yan and Jiang studied the electromechanical coupling
(EMC) behavior of piezoelectric nanowires (NWs) with the Euler-Bernoulli
beam theory. They used an analytical method by taking into account the sur-
face effects, including surface elasticity, residual surface stress and surface
piezoelectricity to find the static response of the NWs [16]. Zhan and Gu
utilized large-scale molecular dynamics simulations to study the dual-mode
vibration of 110 Ag NWs with triangular, rhombic and truncated rhombic
cross-sections. They integrated the generalized Young-Laplace equation in-
to the Euler Bernoulli beam theory and studied the surface effects on the
dual-mode vibration [17]. Wang and Feng showed the influence of surface
stresses on the vibration and buckling behavior of piezoelectric nanowires
by using the Euler-Bernoulli beam model by applying a curvature-dependent
distributed transverse loading along the beam [18]. Hong et al. presented
an experimental method of determining resonant frequencies and Young’s
modulus of nanobeams by combining finite element analysis and frequency
response tests based on an electrostatic excitation and visual detection by
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using a laser Doppler vibrometer [19]. He and Lilley studied the influence of
surface stress on the resonance frequencies of bending nanowires by using the
generalized Young Laplace equation, along with Euler-Bernoulli beam theory
and different boundary conditions [20]. Wang and Feng analyzed analytical
relation for the critical force of axial buckling of nanowires by accounting
for both the effects of surface elasticity and residual surface tension [21].
Hasheminejad and Gheshlaghi presented a dissipative surface stress model
to study the effect of size-dependent surface dissipation on natural frequen-
cies of vibrating elastic nanowires NWs using Euler-Bernoulli beam theory
along with the classic Zener model for interior friction in the presence of
an initial surface tension [22]. Olsson et al. have studied the resonant prop-
erties of unstressed and pre-stressed nanowires to explain the reason why
the higher order natural frequencies in Euler-Bernoulli beam theory were
not exact, and they showed the importance of shearing and rotary inertia
for higher order resonant modes [23]. Zhan and Gu conducted a compre-
hensive theoretical and numerical study for bending properties of nanowires
considering surface/intrinsic stress effects and axial extension effect based
on the molecular dynamics (MD) simulation and different modified beam
theories [24]. This paper investigates the influence of surface effects, nonlo-
cal effect and electromechanical coupling due to the piezoelectric medium
on free transverse vibration of piezoelectric nanowires (NWs) together with
fundamental buckling voltage using Timoshenko beam model.

2. Formulation

Figure 1 shows a graphic presentation of the problem with piezoelectric
NW of length L, width b and thickness 2h. It is assumed that the NW is sim-
ply supported between a pair of substrates coated by thin, continuous layers
of electrodes. In this arrangement, the electroded substrates cannot change
the dynamic characteristics of the NW, effectively. For a brief consideration
on the relevancy of this system in regard to realistic instruments, the reader
is referred to Ref. [25].

It has been shown that the piezoelectric NWs under bending have inde-
pendent electric potential of the axial coordination along the NW, except in
the vicinity of two ends [26]. In other word, it was established that the deflec-
tion of the piezo-NW by application of an electric potential ψ (x, z) across the
width of the NW (i.e., through the converse piezoelectric effect; see [27]),
creates a strain field, with the outer surface being stretched (positive strain)
and the inner surface being compressed (negative strain). Consequently, the
electric potential varies between ψ (x,−h) and ψ (x, h) across the width of
the NW from the compressed to the stretched side surface, and one may
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Fig. 1. Geometry of the problem

assume a uniform piezoelectric potential distribution along the NW (x-axis),
implying that Ψz � Ψx. Ψz and Ψx are the electric-field components which
are connected with the electric potential according to the following relations

Ψx = −∂ψ
∂x
, Ψz = −∂ψ

∂z
(1)

For a detailed interpretation of the electric-field components and electric
potential, the interested reader is referred to Ref. [27]. In the absence of
electric charges, the electrostatic equilibrium condition can be expressed as

∂Dx

∂x
+
∂Dz

∂z
= 0, (2)

where Dx and Dz are the electric displacement components, given by [26]

Dz = e31εxx + λ33Ψz, Dx = λ11Ψx (3)

where λ11 and λ33 are dielectric constants that state for dielectric displace-
ment per unit electric field at constant stress in the x and z direction, respec-
tively. In addition, e31 defines the ratio of the electric field strength to the
effective mechanical stress induced in z direction by mechanical stress acting
in x direction. As λ11 and λ33 are on the same order, with consideration
of Ψz � Ψx, one can ignore the electric displacement Dx in comparison
with Dz. It is also assumed that ψ (x,−h) = ψ (x, h) = 2V (see Fig. 1). Here
in this paper, the Timoshenko beam theory is adopted. The effect of shear
deformation, in addition to the effect of rotary inertia, is considered in this
theory. The Timoshenko beam theory (see Reddy [28, 29]), is based on the
displacement field

u1 = u (x, t) + zφ (x, t) , u2 = 0, u3 = w (x, t) (4)
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where φ denotes the rotation of the cross-section. The nonzero strains of the
Timoshenko beam theory are then the components of strain can be found as

εxx =
∂u
∂x

+ z
∂φ

∂x
def
= ε0

xx + zκ, εxz = φ +
∂w
∂x

def
= γ (5)

where
ε0

xx =
∂u
∂x
, κ =

∂φ

∂x
, γ = φ +

∂w
∂x

(6)

and κ indicates the bending strain and γ is the transverse shear strain. The
Timoshenko beam theory requires shear correction factors to balance for error
due to assuming constant shear stress. This factor depends on both material
and geometric factors, but also on the load and boundary conditions. The
principle of virtual displacement for Timoshenko beam is given by

0 =

∫ T

0

∫ L

0

[
m0

(
∂u
∂t
∂δu
∂t

+
∂w
∂t

∂δw
∂t

)
+ m2

∂φ

∂t
∂δφ

∂t
− Nδε0

xx − Mδκ−
−Qδγ + f δu + qδw + N̄ ∂w

∂x
∂δw
∂x

]
dxdt

(7)

with m0 = ρA and m2 = ρI (1 + E/KG) which states the effects of rotary
inertia and shear deformation, where ρE and G are density, Young’s modu-
lus and shear modulus, respectively. Moreover, κ, γ, f (x, t) and q(x, t) are
bending strain, transverse shear strain, the axial and transverse distributed
forces (measured per unit length) and N̄ is the applied axial compressive
force. The Euler-Lagrange equations are

∂Q
∂x

+ q − ∂

∂x

(
N̄
∂w
∂x

)
= m0,

∂M
∂x
− Q = m2

∂2φ

∂t2
(8)

where N̄ = 2bτ0 + Pe(xt) is the total axial force with Pe (x, t) = b
∫ h
−h σxxdz = 2Vbe32

(see Fig. 1) being the electric potential induced component. In this relation
τ0 is the residual surface tension that is in relation with nonlocal parameters
of the piezo-NW and piezoelectric effect. According to [30-32], the stress
field at a point x in an elastic continuum depends both on the strain field at
the point (hyper elastic case) and on the strains fields of all other points of
the body. Eringen qualified this fact to the atomic theory of lattice dynamics.
Thus, the nonlocal stress tensor σ at point x is expressed as

σ =

∫

V

K
(∣∣∣x′−x

∣∣∣ , τ
)
t
(
x′

)
dx′ (9)

where t(x) is the classical, macroscopic stress tensor at point x and the
kernel function K (|x′−x| , τ) states the nonlocal modulus in terms of Euclid-
ean norm and τ which is a material constant that depends on internal and
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external characteristic length (such as the lattice spacing and wave length,
respectively). The macroscopic stress t at a point x in a Hookean solid is
related to the strain e at the point by the generalized Hooke’s law

t (x) = C (x) :ε (x) (10)

where C is the fourth-order elasticity tensor and : denotes the ‘double-dot
product’. The constitutive Eqs. (9) and (10) together define the nonlocal
constitutive behavior of a Hookean solid. Eq. (9) represents the weighted
average of the contributions of the strain field of all points in the body to
the stress field at a point. However, the integral constitutive relation in Eqn.
(9) makes the elasticity problems difficult to solve. Yet, it is possible (see
Ref. [31]) to represent the integral constitutive relations in an equivalent
deferential form as (

1 − τ2l2∇2
)
σ = t, τ=

e0a
l

(11)

where e0 is a material constant, and a and l are the internal and external
characteristic lengths, respectively. Using Eqs. (10) and (11), we can ex-
press stress resultants in terms of the strains in Timoshenko beam theory. As
opposed to the linear algebraic equations between the stress resultants and
strains in a local theory, the nonlocal theory results in differential relations
involving the stress resultants and the strains. In the following, we present
these relations for homogeneous isotropic beams under the assumption that
the nonlocal behavior is negligible in the thickness direction. Then, the non-
local constitutive relation in Eq. (11), with Eq. (10) for the macroscopic
stress, takes the following special relations for beams

σxx − µ∂
2σxx

∂x2 = Eεxx, σxz − µ∂
2σxz

∂x2 = 2Gεxz,
(
µ = e2

0a
2
)

(12)

When the nonlocal parameter µ is zero, the constitutive relations of the local
theories are obtained. In all theories, the axial force–strain relation is the
same and it is given by

N − µ∂
2N
∂x2 = EAεxx (13)

where we have used the relations

A =

∫

A

dA,
∫

A

z dA= 0,
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Thus, the x-axis is taken along the geometric centroid of the beam. In
the Timoshenko beam theory, we have M and Q, in addition to N . Then
constitutive relations are given by

M − µ∂
2M
∂x2 = EIκ, Q − µ∂

2Q
∂x2 =GAKsγ (14)

Here Ks denotes the shear correction factor. The equations of motion of
Timoshenko beam theory now can be expressed in terms of the displacements
(u, w, φ). This requires the use of force- and moment-deflection relationships
in (13) and (14) to replace the stress resultants appearing in the equations of
motion of each theory.

First, the equation of motion governing the axial displacement is derived
for the nonlocal theory, as it is common to all beam theories. Substituting
for the first derivative of the axial force N leads to

N = EA
∂u
∂x

+ µ

(
m0

∂3u

∂x∂t2
− ∂ f
∂x

)
(15)

Substituting N from Eq. (15) into the equation of motion

∂

∂x

(
EA

∂u
∂x

)
+ f − µ∂

2 f
∂x2 = m0

(
∂2u
∂t2
− µ ∂4u

∂x2∂t2

)
(16)

Up to this point, the equation of motion governing the axial displacement
is derived for the nonlocal theory, as it is common to all beam theories.
Eliminating Q in Eq. (8) leads to

∂2M
∂x2 + q − ∂

∂x

(
N̄
∂w
∂x

)
= m0

∂2w
∂t2

+ m2
∂3φ

∂x∂t2
(17)

Substituting for the second derivative of M from Eq. (8) into the first equation
in (14)

M = (EI)eff
∂φ

∂x
+ µ

[
−q +

∂

∂x

(
N̄
∂w
∂x

)
+ m0

∂2w
∂t2

+ m2
∂3φ

∂x∂t2

]
(18)

where (EI)eff = 1
2Esbh2 +

Es
6 h3 + Ebh3

12 + b
∫ h
−h

(
1 +

e2
31

Eλ33

)
Ez2dz is the effective

bending stiffness [20, 21, 33]. Next, substituting for the second derivative of
Q from Eq. (8) into the second equation in (14), we obtain

Q = GAKs

(
φ +

∂w
∂x

)
+ µ

∂

∂x

[
−q +

∂

∂x

(
N̄
∂w
∂x

)
+ m0

∂2w
∂t2

]
(19)
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Now substituting for M and Q from Eqs. (18) and (19), respectively, into
Eq. (4)

∂

∂x

[
GAKs

(
φ +

∂w
∂x

)]
+ q − ∂

∂x

(
N̄
∂w
∂x

)
− µ ∂

2

∂x2

[
q − ∂

∂x

(
N̄
∂w
∂x

)]
= m0

(
∂2w
∂t2
− µ ∂4w

∂x2∂t2

)

(20a)
∂

∂x

(
(EI)eff

∂φ

∂x

)
−GAKs

(
φ +

∂w
∂x

)
= m2

∂2φ

∂t2
− µm2

∂4w
∂x2∂t2

(20b)

Here the exact solutions of bending, natural vibration, and buckling of simply
supported beams are calculated. The boundary conditions of simply support-
ed beams are

w = 0, M = 0, x = 0, L, (21)

The following expansions of the generalized displacements w and φ satisfy
the simply supported boundary conditions

w (x, t) =

∞∑

n=1

Wnsin
(nπx

L

)
eiωnt , φ (x, t) =

∞∑

n=1

Φncos
(nπx

L

)
eiωnt (22)

Substituting these in Eq (20). leads to

1
L4

(
n2Pπ2Wn

(
L2 + n2π2µ

)
+ AL2 (−GKsnπ (nπWn + LΦn) +

+Wn

(
L2 + n2π2µ

)
ρω2

))
sin

(nπx
L

)
eitω = 0

(23a)

− 1
L2

(
(EI)eff n2π2Φn + AGKsL (nπWn + L Φn)

)
cos

(nπx
L

)
eitω = 0, (23b)

Using orthogonality of mode shapes one can obtain

Φn = − AGKsLnπ
AGKsL2 + (EI)eff n2π2Wn (24)

Substituting Eq (24) in (23a) leads to

1
L4 Wn(n4Pπ4µ+AL4ρω2+L2n2π2(N̄− A (EI)eff GKsn2π2

AGKsL2 + (EI)eff n2π2 +Aµρω2))sin
(nπx

L

)
eitω = 0

(25)
Again using orthogonality properties of eigenfunctions leads to frequency
equation as

ωn =

√
L2

(
−n2N̄π2 +

A(EI)effGKsn4π4

AGKsL2+(EI)effn2π2

)
− n4N̄π4µ

√
AL2 (

L2 + n2π2µ
)
ρ

(26)
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Substituting N̄ = 2bτ0 + 2Vbe32. By setting ω1 to zero, one can obtain the
expression for fundamental buckling voltage (i.e., n = 1) in the form

Vb =

A(EI)effGKsL2π2

b(AGKsL2+(EI)effπ2)(L2+π2µ) − 2τ0

2e32
(27)

Furthermore, using the above expression, we obtain the following useful
relation between the residual surface tension and the non-local parameters
of a piezoelectric NW

τ0 = −e32

V −
AGh2KsL2π2

(
2Eshλ33 + b

(
e2
31h + 3Esλ33 + Ehλ33

))

be32

(
3AGKsL2λ33 + 2h2π2

(
2Eshλ33 + b

(
e2
31h + 3Esλ33 + Ehλ33

))) (
L2 + π2µ

)


(28)
Some numerical examples are considered in order to examine both the surface
and small scale effects for a simply supported piezoelectric NW of square
cross section with the physical properties as L

2h= 50 (−h≤ z ≤h) E=207 GPa,
ρ =7800 kg/m3 e31=-0.51 C/m2 and λ33 = −7.88 × 10−11 F/m [26].

For crystalline metals, atomic simulations display that τ0 and Es are of
the same order [34]. Furthermore, in the case of linear elastic deformation,
the contribution of surface elasticity to the total surface stresses can be ne-
glected in comparison with residual surface stress. The experimental values
of surface constants τ0 and Es for piezoelectric materials are not available
in the literature, we shall not consider the surface elasticity effects in our
numerical examples, and the residual surface stress constant is assumed to
be τ0= 0.5N/m along with two selected values for the small scale parameter.
It is clear that the validation of the model is very important for reliability of
the model. Fig. 2 shows the dimensionless natural frequencies compared to
those available in Ref. [14] which is obtained from

ω1 =

(
π

L

)
√√

L2P + (π)2
[(

(EI)e f f + µP
)]

ρA
(
L2 + µπ2) , (29)

where it is assumed that E=207 GPa, λ33=−7.88 10−11, τ0=0, ρ=7800 kg/m3,
Es = 0, as one can see, this comparison shows an appropriate accommodation
between these two methods, so the model is reliable and accurate enough.
Figure 3 showed variation of the normalized fundamental natural frequency
with NW length for selected input voltages and non-local parameters with
τ0 = 0.5. Here, the natural frequency is normalized with respect to the
fundamental frequency calculated using the classical Euler-Bernoulli beam
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model i.e., neglecting the surface and small scale parameters as well as the
piezoelectricity effects as

ωn =
(nπ)2 (EI)eff

(ρAL4)
(30)

Fig. 2. Comparison of nondimensional fundamental natural frequencies between present model
and results obtained from Ref. [14]: markers: Ref. [14], Lines: Present model

Fig. 3. Variation of the normalized fundamental natural frequency with NW length for selected
input voltages and non-local parameters with τ0 = 0.5

Here, it is clear that by increasing the NW length, both surface and small
scale effects gradually disappear. Also, decreasing the input voltage leads to
an expected overall decrease in the calculated NW natural frequency. Fur-
thermore, one can note that by including the non-local effects for very short
NWs under a negative input voltage (L < 50 nm, V = −1Volt, µ= 10−14m2),
the natural frequency is calculated to be zero, i.e., harmonic motion would
not be possible for the piezoelectric NW, and buckling may occur. Moreover,
one should note that the calculated natural frequency of the piezoelectric NW
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without the non-local effects (i.e., µ= 0 m2), perfectly match the numerical
results obtained using Eq. (17) in Ref. [18]. The most interesting observa-
tion is perhaps the fact that including the non-local effects (i.e., µ= 10−14m2),
causes a notable drop in the value of NW natural frequencies (i.e., like a
damping effect), nearly regardless of input voltage.

Figure 4. shows the effect of variation of residual surface tension τ0 and
surface Young’s modulus Es on fundamental natural frequency of the NW
with parameters set as V = 1, µ = 10−14. It is clearly seen that the fun-
damental natural frequency decreases with increase of both surface young’s
modulus and residual surface tension. Also the effect of surface Young’s
modulus in low values is more significant than high values specially when
Es � E.

Fig. 4. The effect of variation of residual surface tension τ0 and surface young’s modulus Es on
fundamental natural frequency of the NW with parameters set as V= 1, µ=10−14

Many different types of nanowires exist, including metallic (e.g., Ni, Pt,
Au), semiconducting (e.g., Si, InP, GaN, etc.), and insulating (e.g., SiO2,
TiO2). The fundamental dimensionless natural frequency for Nickel, Plat-
inum, Gold and Silicon are compared with respect to NW length in Fig. 5.
One can see that GOLD has the highest first dimensionless natural frequency
which indicates that it has better performance in applied problems because
of wide application of nanowires in low frequency range. Another realization
which can be extracted from Fig. 5 is that fundamental dimensionless natural
frequency is independent of nanowires material in long NWs.

Furthermore, by making use of Eq. (27), one can obtain a useful design
chart describing the relationship between the fundamental buckling voltage
and the length of the piezoelectric NW. This is done in Fig. 6 for a piezoelec-
tric NW of the given parameters, for selected values of small scale effect. It
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can be seen that by increasing the NW length the variation of fundamental
buckling voltage is tending to a constant value.

Fig. 5. The fundamental dimensionless natural frequency for Nickel, Platinum, Gold and Silicon

Fig. 6. Relationship between the fundamental buckling voltage and the length of the piezoelectric
NW

3. Conclusion

This paper makes the first attempt to study the free vibration of piezo-
electric Timoshenko NWs in presence of both the surface and the non-local
elasticity effects. Furthermore, a theoretical criterion for describing the rela-
tionship between the residual surface tension and the small scale parameter
of the piezoelectric NWs is presented. This information can complement the
experimental measurement of the critical electric potential at which the axial
buckling occurs. It is seen that the resonant frequency of piezoelectric NW
can be tuned by adjusting the applied electric potential. Also, the small-scale
parameter (non-local elasticity effect) can significantly affect the predicted
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resonant frequency of piezoelectric NW. Furthermore, an explicit expres-
sion (design chart) between the residual surface tension and the non-local
parameter is presented, which can aid in experimental characterization of
piezoelectric NWs.

Manuscript received by Editorial Board, February 26, 2013;
final version, November 26, 2013.
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Badanie drgań swobodnych nanodrutów piezoelektrycznych przy zastosowaniu teorii
Timoszenki z uwzględnieniem efektów małej skali i efektów powierzchniowych

S t r e s z c z e n i e

W pracy badano wpływ efektów powierzchniowych na poprzeczne drgania swobodne nano-
drutów piezoelektrycznych (nanowires, NW). Model dynamiczny NW stworzono posługując się
nielokalną teorią belki Timoszenki. Stosując tę teorię, przy uwzględnieniu zarówno efektów powierz-
chniowych i efektów nielokalnych, obliczono częstotliwości drgań własnych nanodrutu. Uzyskane
rozwiązanie, o formie zamkniętej, pozwala także obliczyć podstawowe napięcie wyboczenia. Po-
nadto, zbadano wpływ efektów małej skali na resztkowe naprężenie powierzchniowe i potencjał
elektryczny. Wyniki pracy mogą być użyteczne przy projektowaniu przyrządów wykorzystujących
nanodruty piezoelektryczne.


