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MODAL MEASUREMENTS AND MODEL CORRECTIONS
OF A LARGE STROKE COMPLIANT MECHANISM

In modelling flexure based mechanisms, generally flexures are modelled per-
fectly aligned and nominal values are assumed for the dimensions. To test the validity
of these assumptions for a two Degrees Of Freedom (DOF) large stroke compliant
mechanism, eigenfrequency and mode shape measurements are compared to results
obtained with a flexible multibody model. The mechanism consists of eleven cross
flexures and seven interconnecting bodies. From the measurements 30% lower eigen-
frequencies are observed than those obtained with the model. With a simplified mod-
el, it is demonstrated that these differences can be attributed to wrongly assumed leaf
spring thickness and misalignment of the leaf springs in the cross flexures. These
manufacturing tolerances thus significantly affect the behaviour of the two DOF
mechanism, even though it was designed using the exact constraint design principle.
This design principle avoids overconstraints to limit internal stresses due to manu-
facturing tolerances, yet this paper shows clearly that manufacturing imperfections
can still result in significantly different dynamic behaviour.

1. Introduction

There is a growing demand from industry for high precision position-
ing mechanisms which can be used in vacuum environments and in the
vicinity of UV light sources or electron beams. Conventional solutions like
stages based on roller bearings suffer from hysteresis and wear. Furthermore
they contaminate the vacuum due to evaporation of lubricants. Flexure based
stages behave deterministic, are free of backlash and do not contaminate
the vacuum environment [1-3]. Instead of distributed compliance, the stiff-
ness should be lumped using flexure hinges, which maximizes out-of-plane
stiffness, resistance to buckling and eigenfrequencies due to internal modes
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[3]. However misalignments in an overconstrained system can lead to un-
wanted changes in eigenfrequencies and stiffnesses [4, 5]. Hence to achieve
deterministic behaviour, the principle of exact constraint design [6] should
be taken into account. For monolithic designs, overconstraints in the out-of-
plane direction are common [7, 8]. Due to high production accuracy, internal
stresses remain limited. However, for large stroke applications, the allowable
geometries of monolithic designs are too restrictive to achieve high support-
ing stiffnesses in a deflected state. For example advanced flexure hinges as
in [9], which are non-monolithic, cannot be used to accomplish the motion.
Hence, overconstraints should be avoided in non-monolithic mechanisms.

Brouwer et al. [10] designed and built a large stroke two DOF elastic
mechanism using the exact constraint design method. The mechanism con-
sists of eleven cross flexure hinges interconnected with links. Exact constraint
design is realized by adding flexibility to the links in specific directions. The
detailed design and preliminary eigenfrequency measurements of the mech-
anism are presented by Folkersma et al. [11]. The mechanism was exited
and measured at only one location and thus mode shapes could not be ob-
tained. In the undeflected state, higher eigenfrequencies were obtained with
a finite element model than those resulting from the measurements. Because
no mode shapes are available, it is hard to address the cause of the difference
in eigenfrequencies.

For such insight more extensive measurements are required as we will
show in the present paper. A nonlinear flexible multibody model is used,
obtained with the SPACAR approach [12] and is compared to modal mea-
surements in the full workspace of the mechanism. In maximizing the con-
troller bandwidth, it is important that the first unwanted eigenfrequency and
mode shape are predicted properly. Therefore the emphasis lays on compar-
ing the first unwanted eigenfrequency and mode shape. To perform modal
measurements, contactless measurements are favourable because these do
not influence the dynamics. A laser Doppler vibrometer [13] appeared to be
well-suited. Measurements are performed on a variety of locations on the
two DOF mechanism, such that next to eigenfrequencies also mode shapes
are available. Furthermore, the force direction of the excitation force needs
to have a high repeatability, which is achieved by using a shaker for the
excitation [14]. The differences between the measurement results and the
model results are investigated by the use of a simplified model. The pro-
posed modal measurement approach is used in this paper to analyze the two
DOF mechanism, but it is more generally applicable for mechanical systems.

The mechanism and the model will be outlined first, secondly the modal
measurement approach will be described. After that the results are presented.
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Then a simplified model is used to interpret the results and finally some
concluding remarks are given.

2. Two DOF compliant mechanism

The two DOF compliant mechanism is visualized in Fig. 1a. It consists
of eleven hinges (labelled 1-11), connected by seven linkages (labelled A-G)
and the end-effector (labelled eff ). Translation of the end-effector in x- and
y-direction are the degrees of freedom; the other degrees of freedom are
suppressed. The encoders and actuators on arm B and D are used to control
the rotation angles of these arms. The kinematic relation between the encoder
readings and the end-effector position is used to position the end-effector in
its workspace of 100 × 100 mm.

The two DOF mechanism consists of three loops as visualized in Fig. 1b.
Each hinge allows rotation in one direction, which means that there are three
overconstraints in each loop. This results in nine out-of-plane overconstraints,
therefore nine compliances have to be added to obtain an exact constraint
mechanism. Linkage C is designed such that it has three compliances. Fur-
thermore three compliances are added by notch flexures close to the end-
effector in arms E, F and G and three torsional compliances are added in
those three arms [11].

Fig. 1. The two DOF mechanism: (a) Top view with measurement points; (b) The three closed
loops

The cross flexures are made of Udeholm Stavax Supreme steel and are
fabricated using the Electric Discharge Machining (EDM) technique. Linkage
C together with cross flexures 7 and 8 are made out of one piece, also using
the EDM technique and Udeholm Stavax Supreme steel. The other linkages
are milled out of aluminium.
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2.1. SPACAR model

The flexible multibody modelling approach implemented in the SPACAR
software [12], is used to create a model. Beam elements are used to model the
flexures. This element takes transverse shear and torsion-extension coupling
into account [15]. The mass moments of inertia of the beam cross section are
also considered. Furthermore, torsional stiffening due to constrained warping
is included [9]. The linkages and the end-effector are modelled with the use
of superelements [16]. These elements have 12 constrained modes to de-
scribe the deformations and have an equivalent mass and inertia distribution.
Mass and inertia of bolts are included using nodal loads. The end-effector is
positioned by applying a moment at arms B and D. The two DOF mechanism
is mounted with base blocks H , I and J on a base plate. This plate is not
included in the model and thus the three base blocks are fixed. Furthermore,
gravity is taken into account.

2.2. Mode shapes

The first two eigenfrequencies are around 1.3 Hz and 2.6 Hz, and the
accompanying mode shapes are movements in drive directions. This means
these two modes can be excited and measured using the actuators and sensors
of the two DOF mechanism. The stiffness properties of the manipulator in
these driving directions do not change much throughout the operating range
of the manipulator. In contrast, the supporting stiffness of deflected cross
flexures is considerably lower compared to the undeflected configuration and
hence the overall dynamic behaviour of the manipulator changes when the
end-effector is moved. More specifically, the first few unwanted modes have
movements perpendicular to the drive direction. The second unwanted mode
shape for the neutral end-effector position is plotted as an example in Fig. 2.

Fig. 2. Second unwanted mode from the model at neutral end-effector position at 121 Hz



MODAL MEASUREMENTS AND MODEL CORRECTIONS OF A LARGE STROKE COMPLIANT. . . 351

Measurements in [11] show that this unwanted eigenfrequency is 105 Hz in
the neutral configuration. However the model shows that this eigenfrequency
is 121 Hz in the neutral configuration as can be seen later in Fig. 7.

3. Modal measurement approach

First the modal estimation method is outlined, which is followed by the
measurement strategy. After that the experimental setup is described which
is used to measure the vertical velocity of the mechanism at 35 locations,
which are used as outputs. Each time the input force is measured at the same
location, so that the phase information can be used to obtain mode shapes.

3.1. Modal estimation method

The modal estimation method consists of two parts, first a pole estimator
is used which is the Least Squares Complex Frequency (LSCF) domain
method [17]. The system poles are passed on to the residue estimator also
called the Least Squares Frequency Domain (LSFD) method [18]. From
the obtained residues the mode shapes can be estimated. A similar modal
estimation method is implemented in [19], where characteristic loci are used
to assess the stability of poles instead of the FRF estimates. However this
is only possible for square multi-input multi-output (MIMO) systems, which
is not the case in this paper. The method will be described briefly for a
single-input multi-output (SIMO) case.

For the pole estimator the measured transfer functions between input and
the j outputs are given as H j(ω f ), where ω f are the discrete frequencies.
These j outputs are the 35 velocity measurements on the two DOF mech-
anism. The transfer functions are modelled with a common denominator
model as

Ĥ j(ωf ) =

nn+1∑

k=1

Ωk(ωf )B jk

nn+1∑

k=1

Ωk(ωf )ak

(1)

where matrix B contains the real valued coefficients for the nominator poly-
nomials of order nn and vector a contains the real valued coefficients for
the denominator polynomial also of order nn. The discrete polynomial basis
functions are given as

Ωk(ωf ) = e− jωf Ts(k−1) (2)
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where Ts is the sampling time. After replacing the model Ĥ j(ωf ) in Eq. (1) by
the measured FRF H j(ω f ) and multiplying both sides with the denominator
polynomial, it can be rewritten as

nn+1∑

k=1

Ωk(ωf )H j(ωf )ak −
nn+1∑

k=1

Ωk(ωf )B jk = e j(ωf ) (3)

where e j(ωf ) is the estimation error. Using a proper frequency dependent
weighting function w j(ωf ) ensures that multiple nearby poles are estimated
properly [18]. The weighing function is given as

w j(ωf ) =
γ2

j (ωf )

1 − γ2
j (ωf )

(4)

where γ2
j (ωf ) is the coherence [20] which indicates the power transfer be-

tween input and the jth output. When no weighting function is used, multiple
nearby poles are estimated as one complex pole pair. With this weighting
function included Eq. (3) can be rewritten as

nn+1∑

k=1

w j(ωf )Ωk(ωf )H j(ωf )ak −
nn+1∑

k=1

w j(ωf )Ωk(ωf )B jk = w j(ωf )e j(ωf ) (5)

This is the weighted linear least squares problem which has to be solved
where the weighted error w j(ωf )e j(ωf ) is minimized, to obtain the parameters
a and B.

In [21] it is shown that when the last coefficient of a is fixed, the math-
ematical and system poles can be distinguished best. This principle is used
to plot the stability charts. Then Eq. (5) is solved for increasing order of
the denominator polynomial, while the last coefficient is fixed to one. Each
time the order of the nominator polynomial is kept constant at the highest
order. Furthermore the discrete poles are transformed to continuous poles.
The stability charts can be used to judge which poles are system poles. The
stability chart obtained from the measurements at the neutral end-effector
position of the two DOF mechanism is plotted in Fig. 3a. The line is a
summation of the absolute values of the measured transfer functions, which
can be used as a reference. The dots indicate unstable poles i.e. poles with a
positive real part, the crosses indicate stable poles i.e. poles with a negative
real part. A system pole is identified if a stable pole occurs at the same
frequency for a number of increasing orders and is denoted with a number
in the stability chart. For reliable results the order nn should be a bit higher
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Fig. 3. Stability charts: (a) For neutral end-effector position; (b) At deviated end-effector position

than the real expected order of the system and the frequency range should
be bounded to exclude low and high frequent noise and unwanted dynamics.

The continuous system poles are passed on to the residue estimator. For
the case where the input is a force and the output is a velocity, the transfer
functions are modelled in a pole residue form as

Ĥ j(ωf ) =

np∑

k=1

iωf Rk j

(iωf − λk)(iωf − λ̄k)
(6)

where λk and λ̄k are the np complex system pole pairs obtained previously
and Rk j is the residue of the kth mode and the jth output which are to
be estimated. To give the model the same structure as the measurements,
two residual terms are added [22]. Accounting for the fact that force to
velocity transfer functions are obtained, this results in a 1/s term for lower
suspension modes and an s term for higher truncated modes. Now the total
model becomes

Ĥ j(ωf ) =

np∑

k=1

iωf Rk j

(iωf − λk)(iωf − λ̄k)
+ iωf R̄1 j +

R̄2 j

iωf
(7)

where R̄1 j and R̄2 j are the additional residuals to be estimated. When again
the model Ĥ j(ωf ) is replaced by the measured FRF H j(ω f ) this becomes

np∑

k=1

iωf Rk j

(iωf − λk)(iωf − λ̄k)
+ iωf R̄1 j +

R̄2 j

iωf
− H j(ωf ) = e j(ωf ) (8)

This linear least squares problem is solved by minimizing the error e j(ωf )
to obtain the residues, which hold the amplitude information of the mode
shapes. Proportional damping is assumed, so normal modes are obtained
which means the residues are real-valued.
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3.2. Measurement strategy

As mentioned before the unwanted mode shapes have mainly move-
ments in out-of-plane direction. Therefore these modes are measured best
when measuring and exciting in that direction. To obtain the required transfer
functions, the velocity in vertical direction is measured at 35 positions on the
two DOF mechanism, indicated by the red dots in Fig. 1a. The input force
is measured at a fixed location indicated by the blue square in Fig. 1a. In
selecting these measurement points, each part is considered independently.
Three points are required to determine the out-of-plane position and the
two orientations of the part. A fourth and fifth point are added to measure
internal bending and torsion. For part F, a sixth point is added to measure
the deflection of a notch-flexure.

The two DOF mechanism is analyzed for 65 equidistant end-effector
positions on two arcs in the workspace as shown in Fig. 4. Both arcs cross
at the neutral end-effector position. At the y-move arc the x actuator is
standing still and at the x-move arc the y actuator is standing still. In each
end-effector position, the velocity is measured in each of the 35 positions that
are indicated in Fig. 1a and are at fixed relative positions on the respective
links of the two DOF mechanism for each end-effector position. Because one
of the two actuators is standing still at both arcs, a part of the mechanism
is the same during each measurement on that arc. When a mode shape is
mainly dependent of the dynamics in that part it is easier to link specific
properties of the real mechanism to the model.

Fig. 4. End-effector positions over the workspace

Experiments are performed in the middle section of 80 × 80 mm of
the total workspace of 100 × 100 mm. Outside this section the unwanted
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eigenfrequencies of the mechanism are so low that the implemented controller
cannot suppress the out-of-plane disturbances caused by the experiments.

3.3. Experimental setup

The measurement setup is shown in Fig. 5 and the equipment is listed in
Tab. 1. A laser Doppler vibrometer mounted on a six DOF robot is used to
measure the velocity in z-direction at 34 points on the two DOF mechanism.
Retro-reflective tape is used to assure a high signal quality.

Fig. 5. Experimental measurement setup

Table 1.
Measurement equipment

No Item Type
1 Laser sensor head Polytec OFV-303
2 Six DOF robot Stäubli RX130
3 Suspension –
4 Exciter B&K 4810
5 Wire flexure –
6 Force transducer B&K 8203
7 Accelerometer B&K 4517
- Condition amplifier B&K NEXUS
- Power amplifier B&K 2707
- Digital signal processor Siglab 4-channel model 20-42
- Calibration exciter B&K 4294
- Computer SigLab 3.28 and Matlab 6.5
- Laser controller Polytec OFV-3001
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The two DOF mechanism is excited in the z-direction using a shaker
which is suspended with a low frequent spring. A wire flexure ensures the
excitation is directed the same for each measurement. The input force is
measured using a force transducer. For each end-effector position the shaker
was moved.

Underneath the shaker, a large area is not accessible for the laser Doppler
vibrometer, so the motion is measured with an accelerometer that is located
next to the force transducer. The acceleration signal is integrated to a velocity
signal.

The accelerometer and force transducer signals are conditioned and pro-
cessed together with the velocity data from the laser controller in a digital
signal processor and transmitted to a computer, where the transfer functions
and coherences are estimated using SigLab software. The bandwidth and
measuring time are respectively 500 Hz and 65.6 s. Furthermore 20 averages
are used with 50% overlap and a Hanning window was applied. As input a
pseudo random noise excitation is used.

The combination of a laser Doppler vibrometer and the presented modal
estimation method are firstly tested on a known monolithic object, from
which it appeared that the method was well suited for an experimental modal
analysis.

3.4. Validation experimental setup

3.4.1. Robot vibrations

The velocity is measured relatively from the Stäubli robot, therefore it
is required that the Stäubli robot has a low vibration level. Measurements
showed that the vibration level of the Stäubli robot was clearly acceptable.The
velocity is measured relatively from the Stäubli robot, therefore it is required
that the Stäubli robot has a low vibration level. Measurements showed that
the vibration level of the Stäubli robot was clearly acceptable.

3.4.2. Suspension influence

The two DOF mechanism is mounted on 4 rubber blocks, which results
in movements of the whole setup. Therefore, the baseplate motion is also
measured at 7 distributed points for a number of end-effector positions. The
ratio of the largest amplitude of the two DOF mechanism divided by the
largest amplitude of the base plate is 88, 37, 10 and 13 respectively for
the first four unwanted modes in the neutral configuration. This ensures that
for the first two unwanted modes, the base plate is not moving significantly.
However, the third and fourth unwanted mode have a large relative movement
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of the baseplate. The baseplate is designed such that no internal modes are
expected below 300 Hz.

3.4.3. Actuator influence

When the two DOF mechanism is analyzed for an end-effector position,
the end-effector is kept in place using the actuators and sensors of the two
DOF mechanism. A PD controller in combination with static force feed-
forward is implemented. The influence of the actuators is tested by perform-
ing measurements with the end-effector at the neutral position having the
motors powered and unpowered. It appeared that there was no significant
difference between the unwanted eigenfrequencies and mode shapes of both
measurements. In the other end-effector positions only the static contribution
of the controller differs, the dynamic properties stay the same. Therefore it
can be concluded that the actuators do not have a significant influence on
the investigated dynamics of the two DOF mechanism for each end-effector
position. Of course the actuators do affect the first two in-plane modes, but
these are not of interest for the measurements in this paper.

3.4.4. Disturbances

A number of measurements showed eigenfrequencies around 70 Hz. In
Fig. 3b the stability chart is plotted for the deviated end-effector position,
[x, y] = [0.0197, 0.0038] m, where an eigenfrequency is identified at 65 Hz.
Extensive measurements by impacting the two DOF mechanism with a ham-
mer and measuring the response with an inductive sensor at the end-effector
in the z-direction, showed that the eigenfrequency was not present consis-
tently. For example in Fig. 3a the eigenfrequency is not visible. Therefore it
is concluded that it is an artefact of the measurement technique and these
peaks are omitted in the measurement results.

4. Measurement and model results

4.1. Typical measurement

The measurement at the neutral end-effector position is used as an exam-
ple to show the different steps in the measurements. The 35 transfer functions
are analyzed by the pole estimator and the resulting stability chart is plotted
in Fig. 3a. To get a proper result, order nn had to be chosen in the range of
20 to 50 for each end-effector position, in this case the order was set to 25.
The frequency range is set to 50 to 200 Hz, because with this range it is
assured that the first unwanted eigenfrequency will be measured. As can be
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seen seven system poles are identified in this case. Each peak is identified
as an eigenfrequency and at 110 Hz two closely spaced eigenfrequencies are
found.

The seven system poles are used in the residue estimator to estimate
the mode shapes, from which a model of the system results. In Fig. 6 the
measured transfer function from force to integrated accelerometer signal is
plotted combined with its estimation. As can be seen the model is fitted well
and only small differences are found.

Fig. 6. A single measured transfer function with estimation at neutral end-effector

4.2. Results

In Fig. 7a the first four unwanted eigenfrequencies from the measure-
ments (ωmi) are compared to the first four unwanted eigenfrequencies from
the model (ωsi) along the x-move arc from Fig. 4. In Fig. 7b the same
comparison is made for the y-move arc. For the x-move eigenfrequencies,
only the x coordinate of the end-effector location is used at the horizontal
axis. Similarly, for the y-move arc only the y coordinate is used. In both cases
the first two unwanted eigenfrequencies are plotted darker than the third and
fourth eigenfrequencies, because only the first two unwanted eigenfrequencies
will be discussed in the following text.

As can be seen in Fig. 7a two mode veering regions [23] occur at the
ωs1 and ωs2 lines around x = ± 0.025 m. In Fig. 7b the order of these two
modes ωs1 and ωs2 changes as well around y = ± 0.025 m.
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Fig. 7. First four unwanted eigenfrequencies obtained from measurements and model

Visual inspection shows that in both figures the eigenfrequencies denoted
with ωs2 have a mode shape where mainly arm C is vibrating. This is the
second mode shape in the measurements, which is plotted for the neutral
end-effector position in Fig. 8. Therefore the ωs2 and the ωm2 lines have to
be compared with each other. In a similar way the ωs1 and the ωm1 lines are
linked to each other.

Fig. 8. Second unwanted mode from measurements at neutral end-effector position at 93 Hz

The differences between the ωm1 and the ωs1 lines are relatively and
absolutely larger in the middle as at the edges. At the neutral end-effector
position, the 86 Hz from the measurements is 30% lower than the 121 Hz
from the model, whereas the shape is about the same. This means the model
describes the general behaviour well, but the supporting stiffness of the cross
flexures is much lower in the real mechanism compared to the model. The
ωm2 and the ωs2 lines are closer to each other in both cases.

5. Differences between model and real setup

The measurements showed lower eigenfrequencies than the model, of
which the differences between the ωm1 and the ωs1 lines are the most impor-
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tant. The most likely causes of the differences are listed here with a short
description.
• Leaf spring dimensions – The leaf springs are manufactured using the

EDM process as mentioned before. During the EDM process, the wire
will vibrate. The higher the part, the longer the wire and the larger the
amplitude of vibration will be, which results in smaller dimensions. A
thinner or smaller leaf spring means a lower supporting stiffness.

• Bending or torsion in the leaf springs - The leaf springs can be bent or
twisted as drawn in Fig. 9, caused by internal stresses resulting from the
EDM process and the leaf springs can be damaged during transport or
assembly of the two DOF mechanism.

• Leaf spring mounting – The holes which hold the bolts and the dowel pins
to mount the leaf springs can deviate from the location at the drawings.
The flexibility of the leaf springs will allow the bolts to fit, but the
resulting internal stresses in the cross flexures will lead to bent or twisted
leaf springs.

• Mounting surface – If the surfaces at which the leaf springs are mounted
do not have the proper angular values, the leaf springs will be mounted
on a skew surface. And thus they will become bent or twisted.

• Closing a loop – The two DOF mechanism consist of three loops as can
be seen in Fig. 1b. In one loop all mounting errors at the cross flexures
and the gravity cause deviations. When the last flexure is mounted, the in-
plane flexibility of the cross flexures and the local out-of-plane flexibility
added for the exact constraint design will allow all bolts to fit. However,
this causes the cross flexures to be mounted in a deflected state and its
flexures will not be perfectly straight in the neutral end-effector position.

Fig. 9. Cross flexure dimensions in millimetres, bending and torsion visualized

The differences listed here all can have influence on the dynamic behav-
iour of the two DOF mechanism, but some of them have a larger impact than
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others. Deviations in height and thickness of the leaf springs will all be in
the order of tens of microns. With such a deviation only the thickness will
have a significant influence. The other differences all come down to bent or
twisted leaf springs. As can be seen in Fig. 9, a cross flexure consists of
three parts: part a, b and c. The relatively small and thin parts a and b cause
the most problems. They are easily damaged and they have to be mounted
perfectly parallel with respect to each other to have no internal stresses. The
three leaf springs in part c are perfectly aligned with respect to each other,
because they are made out of one piece. To investigate the effects of the
thickness, bending and twisting of the flexures on the dynamics of the two
DOF mechanism, a simplified model is created.

5.1. Four link mechanism

To investigate the differences in eigenfrequencies a simplified model is
made of loop 1 from Fig. 1b. This four link mechanism is created using
SPACAR and the same modelling parameters are used as for the two DOF
mechanism. The mass properties are adapted in such a way that the second
eigenfrequency is comparable to the ωm1 and the ωs1 frequencies of the two
DOF mechanism. The second eigenfrequency is used as a measure of per-
formance. The two cross flexures at 2 and 3 are the same as in the complete
model of the two DOF mechanism. A cross flexure with its dimensions is
drawn in Fig. 9. The hinges at 1 and 4 only rotate around the z-axis. A
model with two cross flexures is used such that the modelled imperfections
in one cross flexure also affect the other cross flexure, which gives more
representative results than when only one cross flexure is used.

Fig. 10. Four link mode: (a) Undeflected configuration, (b) Top view of the model with rotated
cross flexures

The flexures in both cross flexures are attached to each other with the
use of rigid parts. At the right hand side the cross flexures are fixed. At
the left hand side they are rigidly connected to rigid weightless links A and
B. These links are connected by hinges to the rigid link C1, which holds a
distributed mass of 4.75 kg/m. The asymmetry of the two DOF mechanism
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is reproduced by adding link C2, which also holds a distributed mass of
4.75 kg/m. This link is connected rigidly to link C1. Furthermore, a nodal
mass of 1 kg is attached at point 5, which is at the centre of the end-effector.

By applying a moment around the z-axis at bar B, the four link mech-
anism can be actuated to angle θz. For the end-effector positions at which
the two DOF mechanism is analyzed, the maximum deflection of the cross
flexures is about ±10◦. Therefore, the four link model is analyzed in the
range of −10◦ to +10◦ for θz.

The second eigenfrequency of the original four link model is plotted in
Fig. 11. At the middle the second eigenfrequency is 102 Hz and at the sides
it drops to 40 Hz and 53 Hz. The asymmetry in the graph is caused by the
asymmetry in the model. To investigate the effect of torsion, torsional stress
is introduced in parts a and b. However this showed no significant differences
in the second eigenfrequency, therefore these results are omitted.

Fig. 11. Second eigenfrequency four link model

5.2. Leaf spring thickness

Measurements showed that the leaf spring thickness was 0.03 mm to
0.04 mm smaller than modelled. This means that the actual thickness is
about 0.05 mm too small, when accounting for the roughness of the surface
of the leaf springs. The second eigenfrequency using flexures with a thickness
of 0.45 mm instead of 0.5 mm is plotted in Fig. 11. The difference compared
to the original line is about 5 Hz over the whole angle of deflection.
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5.3. Bending

Ideally the highest supporting stiffness of a cross flexure is in its neutral
configuration. When the leaf springs are misaligned, all leaf springs are not
in their neutral position in any mechanism configuration, which reduces the
maximum supporting stiffness. With the manufacturing tolerances used, the
highest supporting stiffness can be misaligned up to 1◦ from the neutral
configuration of the two DOF mechanism. Therefore this is assumed as a
worst case scenario.

The cross flexures are pre-stressed as in Fig. 10b. The four rigid connec-
tions are rotated 0.5◦ around the z-axis, which means both cross flexures are
rotated 1◦ in opposite direction. Now the highest supporting stiffness of both
cross flexures will be 1◦ out of its neutral configuration. The resulting second
eigenfrequency is plotted in Fig. 11. A difference of 10 Hz is achieved with
respect to the original four link model in the neutral configuration. Away
from the neutral configuration, this difference decreases.

6. Discussion

The four link model is a suitable way to investigate the effects of con-
struction errors on the two DOF mechanism. The bending effect has only
influence in the middle of the stroke of the cross flexures of about 10%. The
leaf spring thickness has a relative influence on the whole stroke of the cross
flexures of about 5%. Both percentages do not add up to the 30% difference
observed in Fig. 7. Note however that in the simplified four link model only
two cross flexures are taken into account. When more cross flexures are
included the difference is expected to be larger.

The thickness distribution of a leaf spring created by the EDM process,
should be investigated more thoroughly to account for these manufacturing
tolerances in the model. Furthermore it is demonstrated that a non-optimal
design can be obtained, when the worst case scenario of manufacturing and
alignment errors is not accounted for in the design.

7. Conclusion

In this paper modal measurements are presented on a large stroke two
DOF cross flexure based positioning mechanism using a laser Doppler vi-
brometer positioned by a six DOF robot and a shaker as excitation. The modal
measurement approach yielded a parametric model, that showed valuable
insight in the dynamics of the two DOF mechanism. The measured force
to velocity transfer functions showed position dependent eigenfrequencies
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and mode shapes. The identified eigenfrequencies appear to be lower than
predicted by a nonlinear flexible multibody model, created with the SPACAR
software package. Still the qualitative behaviour was described well, in partic-
ular the drastic change in eigenfrequency away from the neutral end-effector
position.

The cause of the differences are investigated using a simplified model,
with a representative load case. It appears that a combination of manufac-
turing and alignment errors can lead to a decrease of the eigenfrequencies
of the model with an amount comparable with the measurements. Therefore
in designing non-monolithic flexure based mechanisms, the alignment errors
should be minimized. For example, by minimizing the number of parts and
use specially designed tools to properly align flexures with respect to each
other. The remaining alignment and manufacturing errors should be account-
ed for in the modelling in order to obtain a reasonable prediction of dynamic
properties such as eigenfrequencies.

The exact constraint design method is used in designing the two DOF
mechanism, this method assures low internal stresses resulting from the man-
ufacturing tolerances. However, these tolerances still have an influence on the
performance of the mechanism. In general it can be stated that the importance
of the tolerances should not be underestimated in designing and modelling
compliant mechanisms.
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Pomiary modalne i korekcje modelu mechanizmu podatnego o długim suwie

S t r e s z c z e n i e

W modelowaniu mechanizmów opartych na ugięciach na ogół zakłada się, że ugięcia są
doskonale wyrównane liniowo i przyjmuje nominalne wartości wymiarów. By sprawdzić zasad-
ność tych założeń dla podatnego mechanizmu o długim suwie i dwu stopniach swobody porów-
nano wyniki pomiarów wartości własnych i kształtu modów z wynikami otrzymanymi na podstawie
sprężystego modelu wielu ciał. W mechanizmie występuje jedenaście poprzecznych elementów gię-
tych i siedem wzajemnie powiązanych ciał. Wartości własne wyznaczone pomiarowo były o 30%
mniejsze od obliczonych na podstawie modelu. Można wykazać, że w uproszczonym modelu
różnice te należy przypisać wadliwie przyjętej grubości sprężyny płytkowej i złemu wyrówna-
niu sprężyn w poprzecznych elementach sprężystych. Jak stąd wynika, tolerancje wykonania sil-
nie wpływają na zachowanie mechanizmu o dwu stopniach swobody, mimo że był on zaprojek-
towany przy zachowaniu zasady ścisłych więzów. Taką zasadę projektowania stosuje się, by za-
pobiec tworzeniu więzów nadmiarowych i ograniczyć naprężenia wewnętrzne powstałe w wyniku
niedokładności wykonania. Niemniej, w artykule pokazano wyraźnie, że niedokładności wykonania
mogą wciąż powodować istotne zmiany we właściwościach dynamicznych mechanizmu.


