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FLEXURE OF THICK PLATES RESTING ON ELASTIC
FOUNDATION USING TWO-VARIABLE REFINED PLATE THEORY

The two-variable refined plate theory is used in this paper for the analysis of
thick plates resting on elastic foundation. This theory contains only two unknown
parameters and predicts parabolic variation of transverse shear stresses. It satisfies
the zero traction on the plate surfaces without using shear correction factor. Using the
principle of minimum potential energy, the governing equations for simply supported
rectangular plates resting on Winkler elastic foundation are obtained. The Navier
method is adopted for solution of obtained coupled governing equations, and several
benchmark problems under various loading conditions are solved by present theory.
The comparison of obtained results with other common theories shows the excellent
efficiency of this theory in modeling thick plates resting on elastic foundation. Also,
the effect of foundation modulus, plate thickness and type of loading are studied
and the results show that the deflections are decreased by increasing the foundation
modulus and plate thickness.

1. Introduction

The most common approaches which are used in plate bending analysis
are: the classical thin plate theory (CPT) [1], the first-order shear deformation
theory (FSDT) [2, 3], the higher-order shear deformation theory (HSDT) [4,
5] and three-dimensional elasticity theory [6]. The CPT is the simplest theory
of plate that gives good results for thin plates but cannot predict the transverse
shear stresses along the thickness. The FSDT predicts the constant transverse
shear stress along the plate thickness which is not consistent with zero stress
conditions on free surfaces. In this theory, the shear correction factor is
needed to modify the value of maximum shear stress with that of exact
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value. To avoid the use of shear correction factor and resolve the problem
of free surfaces, the higher-order shear deformation theories (HSDTs) were
developed. Second-order shear deformation theory of Whitney and Sun [7],
third-order shear order shear deformation theory of Hanna and Leissa [8],
Reddy [2], Reddy and Phan [3], Bhimaraddi and Stevens [9], Kant [10] and
Lo et al. [11] are the most famous HSDTs.

A very recently developed approach is the two-variable refined plate
theory (RPT) that contains only two unknown parameters, satisfies the zero
stress conditions on free surfaces and does not need the shear correction fac-
tor in formulation. This theory was introduced by Shimpi [12] for isotropic
plates and then extended to bending and vibration analyses of orthotropic
plates [13, 14]. Kim et al. [15, 16] performed buckling analysis of isotrop-
ic plates and also bending analysis of laminated composite plates. In the
papers by Thai and Kim [17, 18, 19] the problems of free vibrations and
buckling for orthotropic and laminate plates were treated. Buckling analysis
of nanoplates with nonlocal effect was carried out by Narendar [20] and free
vibration analysis of nanoplates considering surface and nonlocal effects was
performed by Malekzadeh and Shojaee [21].

Many problems of considerable practical importance can be related to
the solution of plates resting on an elastic foundation. Reinforced concrete
pavements of highways and airport runways, foundation slabs of buildings,
etc., are well-known direct application [22]. Voyiadjis and Kattan [23] car-
ried out the analysis of thick plates on elastic foundation using refined plate
theory. Liew et al. [24] studied the moderately thick Mindlin plates on elas-
tic foundation using differential quadrature method. Vibration analysis of a
functionally graded rectangular plate on two parameter elastic foundation was
presented by Hasani et al. [25]. A parametric study for thick plates resting
on elastic foundation with variable soil depth was performed by Korhan et
al. [26].

In this paper, the two-variable refined plate theory (RPT) is used for the
analysis of thick isotropic plates resting on elastic foundation. To illustrate the
accuracy of this theory, several benchmark problems subjected to different
loadings are studied. Results obtained by the Navier solution are compared
with the results of CPT [1], FSDT [2], HSDT [4], trigonometric shear de-
formation theory [27] and exact solution of three-dimensional elasticity [6].
Also, the effects of foundation modulus, plate thickness and type of loading
on obtained results are studied.
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2. Theory and Formulation

Consider a simply supported rectangular plate of length a, width b and
thickness h, resting on Winkler elastic foundation. The plate is loaded on its
upper surface by a distributed load of intensity q(x,y) acting on z direction.
As shown in Fig. 1, the right-handed Cartesian coordinate is located at corner
of the middle plane of plate. Accordingly, the plate dimensions ranges are:
0 ≤ x ≤ a, 0 ≤ y ≤ b, −h/2 ≤ z ≤ h/2.

Fig. 1. Geometry and loading of simply supported rectangular plate resting on elastic foundation

2.1. Assumption of Two-variable refined plate theory

The in-plane displacements (u in x-direction, v in y-direction and w in
z-direction, as seen in Fig. 1) are negligible relative to the plate thickness.
So the strain-displacement relations can be expressed as below:



εx =
∂u
∂x
, εy =

∂v
∂y
, εz =

∂w
∂z
,

γxy =
∂v
∂x

+
∂u
∂y
, γyz =

∂w
∂y

+
∂v
∂z
, γzx =

∂w
∂x

+
∂u
∂z

(1)

The transverse displacement w has two components: wb and ws, the bending
and shear components respectively:

w(x, y, t) = wb(x, y, t) + ws(x, y, t) (2)

The stress normal to the middle plane, σz, is small compared with the other
stress components and may be neglected in the stress-strain relations. Al-
so, the material of the plate is linear elastic, homogeneous and isotropic.
Consequently, the stress-strain relations are:

σx =

E(
1 − µ2)

(
εx + µεy

)
, σy =

E(
1 − µ2)

(
εy + µεx

)
, σz = 0,

τxy = Gγxy, τyz = Gγyz, τzx = Gγzx

(3)
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where E, µ and G are the modulus of elasticity, Poisson’s ratio, and the shear
modulus, respectively.

The displacements in x and y directions consist of bending and shear
components:

u = ub + us, v = vb + vs (4)

The bending components of displacement play the same roles as u and v in
classical plate theory. So we can write:

ub = −z∂wb

∂x
, vb = −z∂wb

∂y
(5)

It may be noted that the bending components of displacement, ub, vb and wb,
do not contribute to shear stresses τzx and τyz.

2.2. Displacements, moments and shear forces

Based on the assumptions made in the previous section, the displace-
ments can be calculated as [12]:

u(x, y, z) = −z∂wb

∂x
− f (z)

∂ws

∂x
(6)

v(x, y, z) = −z∂wb

∂y
− f (z)

∂ws

∂y
(7)

where

f (z) = −1
4
z +

5
3
z
( z
h

)2
(8)

Equations (6) and (7) are substituted in Eq. (1) to get strains:

εx = −z∂
2wb

∂x2 − f (z)
∂2ws

∂x2 (9)

εy = −z∂
2wb

∂y2 − f (z)
∂2ws

∂y2 (10)

εz = 0 (11)

γxy = −2z ∂
2wb

∂x∂y
− f (z)

∂2ws

∂x∂y
(12)

γyz = g(z)
∂ws

∂y
(13)

γxz = g(z)
∂ws

∂x
(14)



FLEXURE OF THICK PLATES RESTING ON ELASTIC FOUNDATION USING TWO-VARIABLE. . . 185

where

g(z) = 1 − d f (z)
dz

=
5
4
− 5

( z
h

)2
(15)

Substituting strains from Eqs. (9)-(14) in constitutive equations (3), one ob-
tains the expressions for stresses:

σx = − Ez
1 − µ2

(
∂2wb

∂x2 + µ
∂2wb

∂y2

)
− E

1 − µ2 f (z)
(
∂2ws

∂x2 + µ
∂2ws

∂y2

)
(16)

σy = − Ez
1 − µ2

(
∂2wb

∂y2 + µ
∂2wb

∂x2

)
− E

1 − µ2 f (z)
(
∂2ws

∂y2 + µ
∂2ws

∂x2

)
(17)

τxy = − Ez
1 + µ

∂2wb

∂x∂y
− E

1 + µ
f (z)

∂2ws

∂x∂y
(18)

τyz =
E

2 (1 + µ)
g(z)

∂ws

∂y
(19)

τzx =
E

2 (1 + µ)
g(z)

∂ws

∂x
(20)

The moments and shear forces are defined as:

(Mb
x ,M

b
y ,M

b
xy) =

h/2∫

−h/2

(σx, σy, τxy)zdz

(Ms
x,M

s
y,M

s
xy) =

h/2∫

−h/2

(σx, σy, τxy) f (z)dz

(Qs
xz,Q

s
yz) =

h/2∫

−h/2

(g(z)τxz, g(z)τyz)dz

(21)

Substituting stress components in Eq. (21), one obtains the moments and
shear forces:

Mb
x = −Db

(
∂2wb

∂x2 + µ
∂2wb

∂y2

)
(22)

Mb
y = −Db

(
∂2wb

∂y2 + µ
∂2wb

∂x2

)
(23)

Mb
xy = −Db(1 − µ)∂

2wb

∂x∂y
(24)
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Ms
x = −Ds

(
∂2ws

∂x2 + µ
∂2ws

∂y2

)
(25)

Ms
y = −Ds

(
∂2ws

∂y2 + µ
∂2ws

∂x2

)
(26)

Ms
xy = −Ds(1 − µ) ∂

2ws

∂x∂y
(27)

Qs
x = DQ ∂ws

∂x
(28)

Qs
y = DQ ∂ws

∂y
(29)

where

Db =
E

(1 − µ2)

h/2∫

−h/2

z2dz , Ds =
E

(1 − µ2)

h/2∫

−h/2

( f (z))2dz , DQ =
5Eh

12(1 + µ)

(30)

2.3. Governing equations

The virtual work equation leads to:∫ [
Mb

xδκ
b
x + Mb

yδκ
b
y + Mb

xyδκ
b
xy

]
dA =

∫ [
q − k f (wb + ws)

]
δwbdA (31)

∫ [
Ms

xδκ
s
x + Ms

yδκ
s
y + Ms

xyδκ
s
xy

]
dA +

∫ [
Qs

yδws,y + Qs
xδws,x

]
dA =

=

∫ [
q − k f (wb + ws)

]
δwsdA

(32)

where k f is modulus of elastic foundation and also:

κb
x =

∂2wb

∂x2 , κb
y =

∂2wb

∂y2 , κb
xy =

∂2wb

∂x∂y
, κs

x =
∂2ws

∂x2 ,

κs
y =

∂2ws

∂y2 , κs
xy =

∂2ws

∂x∂y

(33)

Substituting Eqs. (9)-(14) into Eqs. (31)-(32), one will obtain the following
governing equations:

δwb :
∂2Mb

x

∂x2 + 2
∂2Mb

xy

∂x∂y
+
∂2Mb

y

∂y2 + q − k f (wb + ws) = 0

δws :
∂2Ms

x

∂x2 + 2
∂2Ms

xy

∂x∂y
+
∂2Ms

y

∂y2 +
∂Qs

xz

∂x
+
∂Qs

yz

∂y
+ q − k f (wb + ws) = 0

(34)
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Beside the above equations, the remaining terms describe the boundary con-
ditions. Finally, by substituting Eqs. (22)-(29), into Eqs. (34), two coupled
partial differential equations as governing equations of rectangular plate rest-
ing on Winkler elastic foundation will be obtained:

D∇2∇2wb = q − k f (wb + ws) (35)

1
84

D∇2∇2Ws − 5Eh
12(1 + ν)

∇2ws = q − k f (wb + ws) (36)

where D is the flexural rigidity of plate that can be defined as:

D =
Eh3

12(1 − µ2)
(37)

The boundary conditions for simply supported plate are given as below:

x = 0, a : wb = 0, Mb
x = 0, ws = 0, Ms

x = 0 (38)

y = 0, b : wb = 0, Mb
y = 0, ws = 0, Ms

y = 0 (39)

The boundary conditions for clamped edge are given as Eq. (40) and (41).

x = 0, a : wb = 0,
∂wb

∂x
= 0, ws = 0,

∂ws

∂x
= 0 (40)

y = 0, b : wb = 0,
∂wb

∂y
= 0, ws = 0,

∂ws

∂y
= 0 (41)

The boundary conditions for free edge are given as below:

x = 0, a→



Mb
x = 0, −Db

[
∂3wb

∂x3 + (2 − µ) ∂
3wb

∂x∂y2

]
= 0

Ms
x = 0,

420(1 − µ)Db

h2

∂ws

∂x
− Db

[
∂3ws

∂x3 + (2 − µ) ∂
3ws

∂x∂y2

]
= 0

(42)

y = 0, b→



Mb
y = 0, −Db

[
∂3wb

∂y3 + (2 − µ) ∂
3wb

∂y∂x2

]
= 0

Ms
y = 0,

420(1 − µ)Db

h2

∂ws

∂y
− Db

[
∂3ws

∂y3 + (2 − µ) ∂
3ws

∂y∂x2

]
= 0

(43)
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3. The Navier Solution

The governing equations (35) and (36) are coupled and cannot be solved
independently. The Navier method is adopted for solving this problem. This
method has been presented for solution of bending of simply supported plates
by double trigonometric series [28]. The solution of the governing differential
equations (35) and (36), have to be sought in the form of infinite Fourier
series, as follows:

wb (x, y) =

∞∑

m=1

∞∑

n=1

wb
mn sin

(mπx
a

)
sin

(nπy
b

)
(44)

ws (x, y) =

∞∑

m=1

∞∑

n=1

ws
mn sin

(mπx
a

)
sin

(nπy
b

)
(45)

It can be easily verified that these expression for deflections automatically
satisfy the boundary conditions (38) and (39). Also the general load q(x, y)
can be approximated as following double Fourier expansion equation:

q (x, y) =

∞∑

m=1

∞∑

n=1

qmn sin
(mπx

a

)
sin

(nπy
b

)
(46)

The coefficients qmn are calculated as [22]:

qmn =
4
ab

a∫

0

b∫

0

q(x, y) sin
mπx
a

sin
nπy
b

dxdy (47)

Substituting Eqs. (44)-(47) into Eqs. (35) and (36), the following equations
will be obtained:

D
[(mπ

a

)2
+

(nπ
b

)2]2
+ k f

wb
mn + k f ws

mn = qmn (48)


D
84

[(mπ
a

)2
+

(nπ
b

)2]2
+

5Gh
6

[(mπ
a

)2
+

(nπ
b

)2]
+ k f

ws
mn + k f wb

mn = qmn

(49)
The coefficients wb

mn and ws
mn are determined by solving above equations:

wb
mn =

(
D
84B2 + 5

6GhB
)
qmn

A
(50)
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ws
mn =

DB2qmn

A
(51)

where A and B are:

A =
1
84

D2B4 +
5
6
DGhB3 +

85
84

k f DB2 +
5
6
k fGhB (52)

B =

[(mπ
a

)2
+

(nπ
b

)2]
(53)

If the plate does not rest on elastic foundation, the governing equations (35)
and (36) will be uncoupled and the coefficients wb

mn and ws
mn will be simply

determined as the Eqs. (54) and (55):

wb
mn =

qmn

Dπ4(m2/a2 + n2/b2)2
(54)

ws
mn =

qmn

Dπ4

84
(m2/a2 + n2/b2)2 +

5Ehπ2

12(1 + µ)
(m2/a2 + n2/b2)

(55)

4. Results and Discussions

For the purpose of presenting the results, the following non-dimensional
parameters are introduced:

w̄ =
100Eh3

q0a4 w (for problems without elastic foundation) (56)

w̄ =
1000D
q0a4 w (for problems with elastic foundation) (57)

(
σ̄x, σ̄y, τ̄xy

)
=

(
σx, σy, τxy

)

100q0
(58)

(
τ̄xz, τ̄yz

)
=

(
τ̄xz, τ̄yz

)

10q0
(59)

(
M̄x, M̄y, M̄xy

)
=

(
Mx,My,Mxy

) 100
q0a2 (60)

(
Q̄x, Q̄y

)
=

(
Qx,Qy

)

q0a
(61)
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K =

(
k f a4

D

)0.25

(62)

where q0 is the maximum lateral load intensity in each problem.
In sequel, some typical benchmark problems will be solved by the two-

-variable refined plate theory (RPT) and the obtained results will be com-
pared with other plate theories and the exact solution. The sketches of these
problems are shown in Figs. 2 and 3. Exact solutions of these problems exist
in the literature and that is one of the main reasons of choosing them as
benchmark problems. Also, these problems have physical interpretation in
engineering applications; for example contact loading can be simulated by
uniform and sinusoidal loading and hydrostatic pressure can be simulated
by linear loading. As it is mentioned in Introduction, many problems of
considerable practical importance can be related to the solution of plates
resting on an elastic foundation. The exact solution is used as a basis for
comparison of results and the percentage error is defined as below:

%error =
value by each theory – exact value

exact value
× 100 (63)

In each example, the percentage error is shown in parenthesis in subsequent
tables. The plate material properties in all following benchmark problems
are considered as: E = 210 GPa and µ = 0.3.

Fig. 2. Simply supported rectangular plates subjected to (a) uniform loading (b) linear loading;

(c) sinusoidal loading

Fig. 3. Simply supported rectangular plates resting on elastic foundation subjected to (a) uniform

loading (b) linear loading; (c) sinusoidal loading
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Example 1: Consider a rectangular plate (of length a, width b and thickness
h) subjected to uniformly distributed transverse load q0, acting in z direction
as illustrated in Fig. 2a. According to Eq. (47), the coefficients qmn are
calculated as:

qmn =
16q0

π2mn
m, n = 1, 3, 5, ... (64)

where q0 is the intensity of uniform loading. After computing coefficients
wb

mn and wb
mn by Eqs. (54) and (55), the deflections, strains and stresses will be

determined through Eqs. (6)-(20). The obtained results are listed in Table 1.
The obtained displacement by RPT is very close to HSDT, FSDT and

TSDT; where all these theories give excellent results with respect to exact
solution. A brief resume of assumptions and equations of plate theories used
for comparison are given in the Appendix. This issue is seen for values of in-
plane normal stresses too. Also the values of in-plane shear stresses obtained
by RPT are in excellent agreement with the results of other theories.

Table 1.
Comparison of deflection w̄ at (a/2, b/2, 0), in-plane normal stresses σ̄x and σ̄y at (a/2, b/2, h/2)
and in-plane shear stress τ̄xy at (0, 0, h/2) in rectangular isotropic plate subjected to uniformly

distributed loading (a/b = 0.5 and h/a = 0.1)

Theory w̄ σ̄x σ̄y τ̄xy τ̄xz

Present
11.41
(0.35)

0.612
(0.00)

0.279
(–0.71) 0.280

0.679
(0.00)

TSDT [27]
11.34

(–0.26)
0.638
(4.25)

0.245
(–12.81) 0.277

0.701
(3.24)

HSDT [4]
11.42
(0.44)

0.612
(0.00)

0.278
(–1.07) 0.280

0.679
(0.00)

FSDT [2]
11.42
(0.44)

0.610
(–0.33)

0.277
(–1.42) 0.276

0.545
(–19.73)

CPT [1]
11.06

(–2.73)
0.610

(–0.33)
0.278
(–1.07) 0.277 –

EXACT [6] 11.37 0.612 0.281 – 0.679

Example 2: Consider previous rectangular plate which is subjected to linearly
distributed loading as shown in Fig. 2b. Using Eq. (47), the coefficient of
Fourier expansion can be calculated as:

qmn =
8q0

π2mn
cos mπ (65)

The obtained results are compared with other theories in Table 2 and
Table 3 for a/b = 1 and a/b = 0.5 respectively. The central deflections
predicted by RPT have good agreement with the exact values. The obtained
deflections values are predicted only 0.58% and 0.36% more than the exact
value for square and rectangular plates respectively. The in–plane normal
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Table 2.
Comparison of deflectionw̄at (a/2, b/2, 0), in-plane normal stresses σ̄x and σ̄yat (a/2, b/2, h/2)

and in-plane shear stress τ̄xy at (0, 0, h/2) in square isotropic plate subjected to linear transverse
loading. (a/b = 1 and h/a = 0.1)

Theory w̄ σ̄x σ̄y τ̄xy

Present (RPT)
2.3329
(0.58)

0.1445
(0.00)

0.1445
(0.00) 0.0873

TSDT [27]
2.3125
(–0.30)

0.1535
(6.23)

0.1535
(6.23) 0.0975

HSDT [4]
2.3325
(0.56)

0.1445
(0.00)

0.1445
(0.00) 0.0995

FSDT [2]
2.3350
(0.67)

0.1435
(–0.7)

0.1435
(–0.7) 0.0975

CPT [1]
2.2180
(–4.38)

0.1435
(–0.7)

0.1435
(–0.7) 0.0975

EXACT [6] 2.3195 0.1445 0.1445 –

Table 3.
Comparison of deflectionw̄at (a/2, b/2, 0), in-plane normal stresses σ̄x and σ̄yat (a/2, b/2, h/2),

in-plane shear stress σ̄xy at (0, 0, h/2) and transverse shear stress σ̄xz at (0, b/2, 0) in rectangular
isotropic plate subjected to linear transverse loading (a/b = 0.5 and h/a = 0.1)

Theory w̄ σ̄x σ̄y τ̄xy

Present
5.7078
(0.357)

0.3063
(0.098)

0.1396
(0.64)

0.1612

TSDT [27]
5.6700
(–0.307)

0.3194
(4.379)

0.1125
(–19.93)

0.1385

HSDT [4]
5.7100
(0.396)

0.3060
(0.00)

0.1390
(–1.067) 0.1400

FSDT [2]
5.7100
(0.396)

0.3048
(–0.392)

0.1385
(–1.42) 0.1380

CPT [1]
5.5300
(–2.769)

0.3048
(–0.392)

0.1390
(–1.067) 0.1385

EXACT [6] 5.6875 0.3060 0.1405 –

stresses are in good agreement with the exact solution and other refined
theories for both square and rectangular plates. For the square plate, the
obtained in–plane normal stresses exactly coincide on the exact solution.
The obtained in–plane shear stresses by RPT and other theories are in same
range. The distribution of transverse shear stresses across the thickness is
parabolically as expected and shown in Fig. 4. It must be noted that the
transverse shear stresses shown in Fig. 4 are obtained by constitutive relations
where they can be determined by equilibrium equations too.
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Fig. 4. The parabolic variation of out of plane shear stress in z-direction for various loading

(a/b = 1, h/a = 0.1)

Example 3: As illustrated in Fig. 3c, the sinusoidally distributed load in both
x and y directions are applied on the simply supported rectangular plate. The
distributed load is expressed as:

q(x, y) = q0 sin
(
πx
a

)
sin

(
πy
b

)
(66)

As it can be seen in Table 4, the obtained deflections by the RPT have
good agreement with the exact solution and other theories. The obtained
transverse shear stress is identical to the exact solution for this kind of load-
ing. Also the in–plane shear stresses are in a same range for all theories.

Table 4.
Comparison of deflectionw̄at (a/2, b/2, 0), in–plane shear stress τ̄xy at (0, 0, h/2) and transverse

shear stress τ̄xz at (0, b/2, 0) in square isotropic plate subjected to sinusoidally distributed loading
(a/b = 1 and h/a = 0.1)

Theory w̄ τ̄xy τ̄xz

Present
2.960
(0.61) 0.105

0.238
(0.00)

TSDT [27]
2.933

(–0.30) 0.110
0.245
(2.94)

HSDT [4]
2.960
(0.61) 0.107

0.238
(0.00)

FSDT [2]
2.934
(0.27) 0.106

0.169
(–29.0)

CPT [1]
2.802

(–4.76) 0.106 –

EXACT [6] 2.942 – 0.238

One of the Advantages of the RPT, as mentioned before, is that it can
predict parabolic transverse shear stresses such that the condition of free
traction is satisfied on plate surfaces and also the shear correction factor is not
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required. As shown in Fig. 4, the transverse shear stress varies parabolically
across the plate thickness and it comes to zero at plate surfaces for all applied
loadings.

The obtained results in these three examples show the good performance
of the RPT in modeling flexure of thick plates. In sequel, this theory will
be adopted for modeling thick plates resting on Winkler elastic foundation.
Different loading conditions are considered and the effects of foundation
modulus, plate thickness and type of loading will be studied.
Example 4: In this example a simply supported square plate resting on Win-
kler foundation is subjected to a uniformly distributed transverse loading as
shown in Fig. 3a. The coefficients of double Fourier expansion of uniform
loading were presented in Eq. (64).

The obtained non–dimensional deflections, moments and shear forces are
compared with the CPT and FSDT results in Table 5. Although the results
obtained by the RPT and FSDT are very close, the CPT predicts deflec-
tions and moments slightly different from them. In Table 6 the effects of
plate thickness and foundation modulus on deflections, moments and resul-
tant transverse forces are investigated. Again, the results show that predicted
values for RPT and FSDT are very close together and in many cases are
identical. For h/a = 0.2, the effect of elastic foundation on the deflections
of plate is shown in the Fig. 5. As shown in this figure, the deflections are
decreased by increasing the foundation stiffness.

Table 5.
Comparison of non–dimensional deflections, moments and shear forces at (x = a/2, y = b/2) in
square isotropic plates subjected to uniform loading and resting on elastic foundation (a/b = 1

and h/a = 0.05)

Theory w̄ (at z = 0) M̄x M̄y M̄xy Q̄x Q̄y

(1) K = 1

Present 4.106 4.783 4.783 3.240 0.332 –0.332

CPT 4.053 4.809 4.809 2.943 – –

FSDT 4.104 4.775 4.775 3.241 0.337 –0.337

(2) K = 3

Present 3.381 3.865 3.865 2.745 0.288 –0.288

CPT 3.348 3.910 3.910 2.456 – –

FSDT 3.381 3.865 3.865 2.746 0.292 –0.292

(3) K = 5

Present 1.509 1.525 1.525 1.451 0.171 –0.171

CPT 1.507 1.575 1.575 1.181 – –

FSDT 1.509 1.526 1.529 1.452 0.175 –0.175
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Table 6.
Non-dimensional deflections, moments and shear forces in square isotropic plates subjected to

uniform loading and resting on elastic foundation (a/b = 1). Deflections and moments at (x = a/2,
y = b/2), Q̄x at (x = 0, y = a/2) and Q̄y at (x = a/2, y = a)

h/a w̄ (at z = 0) M̄x M̄y M̄xy Q̄x Q̄y

(1) K = 1

0.01
Present 4.054 4.775 4.775 3.240 0.333 –0.333

FSDT 4.054 4.775 4.775 3.241 0.337 –0.337

0.05
Present 4.104 4.775 4.775 3.241 0.333 –0.337

FSDT 4.104 4.775 4.775 3.241 0.337 –0.337

0.1
Present 4.261 4.774 4.774 3.240 0.330 –0.330

FSDT 4.261 4.774 4.774 3.240 0.337 –0.337

0.2
Present 4.887 4.772 4.772 3.238 0.325 –0.325

FSDT 4.888 4.772 4.772 3.239 0.337 –0.337

(2) K = 3

0.01
Present 3.348 3.875 3.875 2.750 0.289 –0.289

FSDT 3.349 3.875 3.875 2.751 0.293 –0.293

0.05
Present 3.381 3.865 3.865 2.745 0.288 –0.288

FSDT 3.381 3.865 3.865 2.746 0.292 –0.292

0.1
Present 3.483 3.834 3.834 2.727 0.284 –0.284

FSDT 3.483 3.834 3.834 2.728 0.291 –0.291

0.2
Present 3.873 3.716 3.716 2.659 0.279 –0.279

FSDT 3.873 3.716 3.716 2.660 0.284 –0.284

(3) K = 5

0.01
Present 1.506 1.540 1.540 1.461 0.173 –0.173

FSDT 1.506 1.540 1.540 1.462 0.176 –0.176

0.05
Present 1.509 1.525 1.525 1.451 0.171 –0.171

FSDT 1.509 1.526 1.526 1.452 0.175 –0.175

0.1
Present 1.519 1.481 1.481 1.372 0.159 –0.159

FSDT 1.519 1.482 1.482 1.421 0.172 –0.172

0.2
Present 1.551 1.328 1.328 1.311 0.151 –0.151

FSDT 1.551 1.328 1.328 1.311 0.162 –0.162

According to Eqn. (44) and (45), the deflections and consequently stress-
es and stress resultants are calculated by some double trigonometric series.
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Fig. 5. The effect of foundation modulus on non-dimensional deflections of simply supported

square plates subjected to uniformly distributed loading (h/a = 0.2)

Proper number of terms should be used for convergence of these series.
In Table 7, the effect of number of terms on convergence of deflection,
resultant force and moment is investigated. The previous square plate resting
on elastic foundation and subjected to uniform loading is studied. Although
the deflection converges for m, n = 11, the stress resultants and couples
converge by considering more terms. Since the stress resultants and couples
are obtained from the second and third derivatives of the deflection, this issue
is predictable [22]. It must be noted that the converged results are presented
in all examples.

Table 7.
Convergence study for square plate resting on elastic foundation and subjected to uniform loading

(a/b = 1, h/a = 0.2, K = 1)

m, n = 1 m, n = 5 m, n = 10 m, n = 11 m, n = 12 m, n = 17 m, n = 20

w̄ 5.080 4.893 4.888 4.887 4.887 4.887 4.887

Q̄x 0.256 0.304 0.314 0.316 0.316 0.321 0.325

M̄x 5.321 4.806 4.780 4.767 4.767 4.773 4.772

Example 5: According to Fig. 3b, a simply supported square plate resting
on elastic foundation is subjected to linearly distributed loading on z = –h/2.
The effect of thickness and foundation modulus are studied and the obtained
results are listed in Table 8. The deflections, moments and shear forces are
decreased by increasing the foundation modulus. Considering different values
of foundation modulus, the deflections of points lying on x-axis are plotted
in Fig. 6. Since the loading varies linearly, the obtained deflections are not
symmetric and the maximum deflection does not take place at center of plate.
It can be seen the deflection profile moves toward symmetric behavior when
the foundation modulus is decreased.
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Table 8.
Non-dimensional deflections, moments and shear forces in square plate subjected to linear

transverse loading and resting on elastic foundation; w̄ and M̄x at (x = a/2, y = b/2),
M̄xy at (x = 0, y = a), Q̄x at (x = 0, y = a/2) and Q̄y at (x = a/2, y = a)

h/a w̄ (at z = 0) M̄x M̄y M̄xy Q̄x Q̄y

(1) K = 1

0.01 2.027 2.387 2.387 1.109 0.089 –0.089

0.02 2.030 2.387 2.387 1.109 0.089 –0.089

0.05 2.052 2.387 2.387 1.109 0.089 –0.089

0.1 2.130 2.387 2.387 1.109 0.089 –0.089

0.15 2.260 2.386 2.386 1.109 0.089 –0.089

0.2 2.443 2.386 2.386 1.109 0.089 –0.089

(2) K = 3

0.01 1.674 1.937 1.937 0.879 0.069 –0.069

0.02 1.676 1.936 1.936 0.878 0.069 –0.069

0.05 1.690 1.932 1.932 0.876 0.068 –0.068

0.1 1.741 1.917 1.917 0.869 0.068 –0.068

0.15 1.824 1.892 1.892 0.857 0.067 –0.067

0.2 1.936 1.858 1.858 0.841 0.065 –0.065

(3) K = 5

0.01 0.753 0.769 0.769 0.309 0.019 –0.019

0.02 0.753 0.769 0.769 0.309 0.019 –0.019

0.05 0.754 0.762 0.762 0.306 0.019 –0.019

0.1 0.759 0.740 0.740 0.298 0.019 –0.019

0.15 0.766 0.706 0.706 0.286 0.018 –0.018

0.2 0.775 0.663 0.663 0.270 0.017 –0.017

Fig. 6. The effect of foundation modulus on non–dimensional deflections of simply supported

square plates subjected to linearly distributed loading (h/a = 0.2)
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Example 6: As shown in Fig. 3c, a simply supported square plate resting on
elastic foundation is subjected to sinusoidal loading in both x and y directions.
Similar to pervious example the effect of thickness and foundation stiffness
are studied and the results are shown in Table 9 and Fig. 7. According to Table
9, the deflections, moments and shear forces are decreased by increasing the
foundation modulus. This issue is seen also in Fig. 7 where the deflections are
decreased by foundation stiffness increase. Since the loading is symmetric,
the deflections are obtained symmetric too.

Table 9.
Non-dimensional deflections, moments and shear forces in square isotropic plates subjected to

sinusoidal loading and resting on elastic foundation. Deflections and moments at (x = a/2,
y = b/2), Q̄x at (x = 0, y = a/2) and Q̄y at (x = a/2, y = a)

h/a w̄ (at z = 0) M̄x M̄y M̄xy Q̄x Q̄y

(1) K = 1

0.01 2.561 3.284 3.284 1.768 0.158 –0.158

0.02 2.565 3.284 3.284 1.768 0.158 –0.158

0.05 2.596 3.284 3.284 1.768 0.158 –0.158

0.1 2.703 3.284 3.284 1.768 0.158 –0.158

0.15 2.883 3.283 3.283 1.768 0.158 –0.158

0.2 3.134 3.282 3.282 1.768 0.158 –0.158

(2) K = 3

0.01 2.126 2.726 2.726 1.468 0.132 –0.132

0.02 2.128 2.725 2.725 1.467 0.131 –0.131

0.05 2.149 2.719 2.719 1.464 0.131 –0.131

0.1 2.223 2.700 2.700 1.454 0.130 –0.130

0.15 2.343 2.668 2.668 1.436 0.128 –0.128

0.2 2.506 2.624 2.624 1.413 0.126 –0.126

(3) K = 5

0.01 0.985 1.264 1.264 0.680 0.061 –0.061

0.02 0.986 1.263 1.263 0.680 0.061 –0.061

0.05 0.990 1.253 1.253 0.675 0.060 –0.060

0.1 1.006 1.222 1.222 0.658 0.059 –0.059

0.15 1.030 1.173 1.173 0.631 0.056 –0.056

0.2 1.060 1.110 1.110 0.598 0.053 –0.053
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Fig. 7. The effect of foundation modulus on non-dimensional deflections of simply supported

square plates subjected to sinusoidally distributed loading (h/a = 0.2)

Finally, the effect of thickness on central deflection of square plate resting
on elastic foundation for different loading conditions is studied. As shown in
Fig. 8, the central deflections are decreased by increasing the plate thickness
for all types of loadings. Considering same q0 for all types of loadings,
as expected the central deflection for uniform loading is obtained more than
sinusoidal and linear loadings; and among the sinusoidal and linear loadings,
the obtained central deflections of the former are greater than the latter.

Fig. 8. The effect of thickness on central deflection of square plates by different type of loading.

(k f = 20 kN/m2·m)

5. Conclusions

The two–variable refined plate theory (RPT) was used in this paper for
the analysis of moderately thick plates resting on elastic foundation subjected
to various types of loadings. This theory contains only two unknown para-
meters, predicts parabolic transverse shear stresses such that the condition
of free traction is satisfied and does not need the shear correction factor.
It gives excellent results compared to other common theories and also it is
relatively easy to apply. Several benchmark problems were studied and the
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obtained results were compared with other plate theories, and exact solutions
and capability of present theory in modeling these problems was proved.

Also the effects of foundation modulus, plate thickness and type of load-
ing on obtained results were studied. The deflections, moments and shear
forces were decreased by increasing the foundation modulus and plates thick-
ness. The transverse shear stresses varied parabolically across the plate thick-
ness and it satisfied the zero traction on the plate surfaces.

Appendixes

Classical plate theory (CPT):
The CPT is the simplest theory of plate that gives good results for thin

plates but cannot predict the transverse shear stresses along the thickness.
The main assumptions of this theory are as below:
– The line which is perpendicular to middle surface remains line after

deflection.
– The line which is perpendicular to middle surface remains perpendicular

to it after deflection.
– The normal stress in direction of plate thickness is neglected.
The displacement field based on this theory can be determined as below:

u(x, y, z) = −z∂w
∂x

v(x, y, z) = −z∂w
∂y

w(x, y, z) = w0(x, y)

(67)

where w is the only unknown parameter in this theory.

First-order shear deformation plate theory (FSDT):
The FSDT predicts the constant transverse shear stress along the plate

thickness which is not consistent with zero stress conditions on free surfaces.
In this theory, the shear correction factor is needed to modify the value of
maximum shear stress with that of exact value. Assumptions of this theory
are as below:
– The line which is perpendicular to middle surface remains line after

deflection.
– The line which is perpendicular to middle surface doesn’t remain perpen-

dicular to it after deflection.
– The normal stress in direction of plate thickness is neglected.
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The displacement field based this theory is as below:

u(x, y, z) = zφx(x, y)
v(x, y, z) = zφy(x, y)
w(x, y, z) = w0(x, y)

(68)

where φx, φx and w0 are the unknown parameter in this theory.

Higher-order shear deformation plate theory (HSDT):
The HSDTs were developed in order to eliminate the defects of FSDT.

There are many kinds of this theory based on the number of unknown pa-
rameter. For example the third-order shear deformation theory of Reddy is
constructed based of following assumptions:
– The line which is perpendicular to middle surface doesn’t remain line

after deflection.
– The line which is perpendicular to middle surface doesn’t remain perpen-

dicular to it after deflection.
– The normal stress in direction of plate thickness is neglected.
The displacement field of this theory is obtained as below:

u(x, y, z) = zφx(x, y) + z2θx(x, y) + z3λx(x, y)
v(x, y, z) = zφy(x, y) + z2θy(x, y) + z3λy(x, y)
w(x, y, z) = w0(x, y)

(69)

where φx, φy, θx, θx, λx and λy are the unknown parameter in this theory.

Trigonometric shear deformation plate theory (TSDT):
The TSDT included four unknown parameter and consider the shear

deformation effects. Assumptions of this theory are as below:
– Displacements are small in comparison with the plate thickness.
– The line which is perpendicular to middle surface doesn’t remain line

after deflection.
– The in-plane displacements consist of two parts: a component analogous

to bending displacement in classical plate theory and second component
due to shear deformation which is assumed to be sinusoidal in nature
with respect to thickness coordinate.

– The normal stress in direction thickness is zero.
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The displacement field based this theory is as below:

u(x, y, z) = −z∂w0(x, y)
∂x

+
h
π

sin
πz
h
φ(x, y)

v(x, y, z) = −z∂w0(x, y)
∂y

+
h
π

sin
πz
h
ψ(x, y)

w(x, y, z) = w0(x, y) +
h
π

cos
πz
h
ξ(x, y)

(70)

where φ, ψ, ξ and w are the unknown parameter in this theory.

Manuscript received by Editorial Board, August 02, 2014;
final version, March 11, 2015.

REFERENCES
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Analiza ugięcia grubych płyt spoczywających na podłożu sprężystym z wykorzystaniem
udoskonalonej teorii z dwiema zmiennymi

S t r e s z c z e n i e

W publikacji wykorzystano udoskonaloną teorię płyty z dwiema zmiennymi do analizy grubych
płyt spoczywających na sprężystym podłożu. Teoria ta, która zawiera tylko dwa nieznane para-
metry, pozwala przewidzieć paraboliczną zmienność naprężeń ścinających. W teorii jest spełniony
warunek zerowej trakcji na powierzchni płyty bez użycia współczynnika korekcyjnego dla ścinania.
Stosując zasadę minimum energii potencjalnej wyprowadzono równania rządzące dla płyt pros-
tokątnych o prostym podparciu spoczywających na sprężystym podłożu Winklera. Do rozwiązania
otrzymanego układu równań sprzężonych zaadoptowano metodę Naviera. Obecna teoria pozwoliła
rozwiązać szereg przykładowych problemów płyt przy różnych warunkach obciążenia. Porównanie
otrzymanych rezultatów z uzyskanymi w innych znanych teoriach wykazuje doskonalą efektywność
stosowanej teorii w modelowaniu grubych płyt spoczywających na podłożu sprężystym. Przestu-
diowano także wpływ modułu sprężystości podłoża, grubości płyty i typu obciążenia. Wyniki
pokazują, że ugięcia płyty maleją przy wzroście modułu sprężystości podłoża i grubości płyty.


