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Joint Source-Channel Coding in Dictionary

Methods of Lossless Data Compression
Marcin Rodziewicz

Abstract—Limitations on memory and resources of communi-
cations systems require powerful data compression methods. De-
compression of compressed data stream is very sensitive to errors
which arise during transmission over noisy channels, therefore
error correction coding is also required. One of the solutions
to this problem is the application of joint source and channel
coding. This paper contains a description of methods of joint
source-channel coding based on the popular data compression
algorithms LZ’77 and LZSS. These methods are capable of
introducing some error resiliency into compressed stream of data
without degradation of the compression ratio. We analyze joint
source and channel coding algorithms based on these compression
methods and present their novel extensions. We also present some
simulation results showing usefulness and achievable quality of
the analyzed algorithms.

Keywords—Channel coding, joint source-channel coding, loss-
less data compression LZ’77, LZSS, source coding.

I. INTRODUCTION

DATA which have to be transmitted through the channel

characterized by limited capacity should be the subject

of source coding (compression) in order to meet the limitations

set by the transmission channel. However, compressed stream

is very prone to transmission errors. Single error can cause

many more errors in the decompression process, which leads

to significant corruption of data. Therefore, in situations where

errors are very probable the compressed data stream has to be

protected by an appropriate channel code.

Lack of error resiliency in lossless data compression meth-

ods is a long-standing problem. Dealing with this problem is

not a simple task. The goal of source coding is to decorrelate

the data coming from the source of information by minimizing

redundancy, whereas the aim of channel coding is to pro-

vide error resiliency by introduction of additional correlation.

Transmission of unprotected compressed data is risky because

single error anywhere in the compressed stream can prevent

from decoding the data correctly. This flaw excluded lossless

compression methods from being used in many applications.

However joint source-channel coding is emerging as a possible

solution to this problem.

The idea behind the joint source-channel coding based on

dictionary methods of data compression is to provide error

resiliency without serious degradation of compression ratio

(ratio between compressed and uncompressed data size). It

is achievable for instance by exploiting the fact that some

of the dictionary based algorithms leave some redundancy in

the compressed stream. Thanks to this seemingly undesirable
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feature it is possible to introduce some error resiliency to

the compressed stream by embedding additional information

into it. This information could be responsible for detecting

and correcting errors in the compressed stream. However, the

method for embedding the additional information depends on

the compression algorithm used.

This paper addresses joint source-channel coding for two

algorithms belonging to the family of dictionary compres-

sion methods. These are LZ’77 (Lempel-Ziv’77) and LZSS

(Lempel-Ziv-Storer-Szymanski) algorithms. This paper is or-

ganized as follows. The next section describes the way for

obtaining redundant bits in the aforementioned algorithms.

Section III introduces different methods for embedding chan-

nel codes into compressed stream and describes the joint

source-channel algorithms proposed by the author of this

paper. Finally, in Section IV numerical results obtained from

simulations are presented whereas conclusions are made in

Section V.

II. REDUNDANT INFORMATION IN LZ’77 AND LZSS

ALGORITHMS

A. LZ’77 Algorithm

The method for obtaining redundant bits in the LZ’77

algorithm originates from [1] and was further analyzed in [2]

and [3]. Firstly, let us remind the operation of the standard

LZ’77 scheme.

The LZ’77 algorithm belongs to the family of dictionary

compression methods [4]. The encoder processes the input data

by parsing the stream from left to right. During this process, it

looks into the sequence of past symbols, stored in the search

buffer (dictionary), to find a phrase matching to the longest

prefix of the string starting in the current position i.e. at the

beginning of look-ahead buffer. The search buffer and look-

ahead buffer form a window. The match is substituted by a

token consisting of three elements (position, length, symbol ).

As soon as the match is found the data in the window is shifted

by length + 1 positions to the left i.e. the first length + 1
symbols of the look-ahead buffer are appended to the search

buffer, and similarly a sequence of the same length of the

following input symbols is appended to the look-ahead buffer.

The LZ’77 algorithm is commonly known as a sliding window

algorithm because the input stream is shifted from right to left

in that window during the encoding process.

Knowing the principles of operation of the LZ’77 scheme

it can be noticed that the algorithm leaves some implicit

redundancy in the compressed stream which can be used for

instance for ensuring error resiliency. This redundancy comes

from the fact that for some phrases the encoder can issue more
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than one possible token. In practice if there are q copies of the

longest matching phrase it is possible to recover ⌊log
2
q⌋ bits

by selecting one of q tokens. In order to embed additional

information used for error correction, the LZ’77 algorithm

needs to be slightly modified. The resulting algorithm allows

embedding bits of message M formed from binary symbols. If

the longest matching phrase for the current look-ahead buffer

sequence has q > 1 matching phrases in the search buffer, the

encoder can choose one of the multiple copies of that phrase.

The next ⌊log
2
q⌋ bits of M will drive the selection of one

token (Fig. 1).

The full description of the encoding algorithm can be found

in [1]. This algorithm will be referred as the LZS’77 algorithm

as in [1].

To exploit the embedding capability of the LZS’77 compres-

sion algorithm, the standard LZ’77 decompression algorithm

needs to be modified. The standard LZ’77 decoder forms

its own buffer as it reads the tokens on its input. This

buffer is used to retrieve the uncompressed sequences of

symbols from the input tokens. In order to be also able to

retrieve embedded data the decoder has to parse its buffer in

order to find possible multiple copies of the sequence that is

currently being decoded. This requires additional time needed

for decompression process. The more detailed description of

LZS’77 decoder can be found in [1].

B. LZSS Algorithm

The LZSS method is based on the LZ’77 scheme and its

principles are very similar. However, it introduces several

changes to the original algorithm. The main difference is that

the encoders’ output token consists of two fields i.e. (position,

length ). In practice it means that the encoder allows to mix

uncompressed data with compressed data. The uncompressed

data is issued by the encoder when the bit-length of a token

is longer than the bit-length of uncompressed data. For this to

work the encoder has to indicate what the type of the output

symbol is. It is done by adding an additional bit before each

output symbol.

Since LZSS and LZ’77 schemes are similar, the method

for embedding and recovering additional information into and

from the LZSS compressed stream is basically the same.

III. ADDING ERROR-RESILIENCY IN LZ’77 AND LZSS

This section describes how to use redundant bits for error

correction and presents novel joint source-channel coding

Search Buffer Current Position

11

10

01

00

Fig. 1. Selection of one of the four available tokens recovers two additional
bits [1].
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Fig. 2. The reverse order of encoding process [1].

algorithms.

Since both LZ’77 and LZSS algorithms operate on strings

and as a result of encoding we obtain the stream of tokens

i.e. the sequence of bytes, the primary selection for channel

codes are Reed-Solomon codes over GF(28). An RS code is

specified as RS(n,k) where n is the size of a codeword and k
is the size of data block to be protected. The RS encoder adds

n−k parity symbols to data consisting of k symbols, resulting

in a codeword of size n. The code rate is defined as k/n . The

correction ability of a RS code is defined as e = (n − k)/2
which means that the decoder can correct up to e errors in the

block. Reed-Solomon codes are codes capable of correcting

burst errors so a single error occurs when one or more bits

within the symbol are wrong.

Using the LZS’77 algorithm it is possible to embed 2e
extra bytes into the compressed stream. Because the number

of redundant bytes highly depends on the type of data to

be compressed, there are different methods for achieving

error-resiliency. These methods share some common features

though. The encoder, name it LZRS [1], has to process the data

in two steps. Firstly, it has to encode the input stream with a

standard algorithm. After this operation, it is possible to embed

the parity bits into the stream. This is because the parity bits

have to be known before they can be embedded. Secondly,

the encoder divides the compressed stream into blocks of a

certain size and then it processes the blocks in reverse order

beginning from the last one. The size of the block depends on

the channel code used. During processing of the block i the

encoder computes the parity bits for the block i+ 1 and then

embeds them into the block i using the method described in

LZS’77 algorithm. The first block of the compressed stream is

a special case because there is no block to embed the additional

bytes so the parity bits for this block are added at the beginning

of the stream. The encoding process is shown in Fig.2.

As mentioned before, the number of redundant bits available

for channel coding is highly dependent on input type i.e.

entropy of the source, alphabet size etc., therefore, error

resiliency introduced by the aforementioned algorithm is also

dependent on the same factors. In the encoding process the

data compressed in the first phase is later divided into blocks.

Let us consider some internal structures of these data blocks.

Authors of paper [1] assumed the data block structure as

in Fig. 3a. In this case the data block consists only of the

compressed symbols and all the bits responsible for error

correction are embedded into the block. The size of each

block is constant. Therefore the encoding process is the same

as described above. Let us denote the method exploiting this

block structure as the ELZ algorithm for the LZ’77 and ELZSS

for the LZSS algorithm. This solution has an advantage of
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Fig. 3. Data block structures for a) ELZ algorithm b) VRLZ algorithm c)
CLZ algorithm.

being backward compatible, i.e. data compressed using this

block structure can be decompressed by a standard LZ’77

decoder. However, such organization of the blocks leads to

inefficient use of available redundant bits. It is so, because the

maximum number of redundant bits that can be embedded into

the block is determined by the data block with the smallest

embedding capability. Since the algorithm assumes only one

channel coder, the number of parity bits is constant. It may

occur that in some data blocks not all redundant bits available

are utilized. Due to this the number of errors that can be

corrected can be relatively small.

More efficient utilization of available redundant bits can be

achieved by changing the assumption that we can use only

one channel coder with fixed parameters, to the assumption

that we can use a set of coders. Therefore for each block a

different channel code can be used. In this case the lengths

of data blocks are variable. The length of the block i (i ≥ 1)

is determined by the embedding capability of the block i− 1.

In order to achieve variable correction capability we have

to slightly modify the encoding algorithm. The proposed

algorithm will be referred to as the VRLZ algorithm. The

encoding process still takes place in two phases, but during

the first phase the encoder, apart from compressing the input

stream, determines the embedding capability of each block

and stores this information in its memory. This information is

further used for determining parameters of the channel code.

In the second phase data blocks are processed in reverse order

in the following manner. While processing data block i+1 the

encoder reads the information about channel code parameters

associated with data block i. Based on this information it

chooses the proper channel coder and computes the parity bits

for block i+1 (comprising of the compressed stream and code

parameters indication field). These bits are later embedded

into the block i. The exceptions in this process are the last

and the first block of the stream. The last block consists only

of compressed symbols and no other additional information,

whereas the parity bits for the first block are added to the

beginning of encoder’s output stream. The parameters of the

code used for the first block are set at the beginning of the

encoding process. These parameters also have an impact on the

number of redundant bits in the following blocks. If the first

block code rate is small (i.e. the data block size is smaller),

then the number of bits that can be embedded into the block

decreases. On the other hand if the code rate is high, then the

number of redundant bits will be greater, but the protection

of this data block will be lower. Therefore, it is important

to choose the right code rate. The structure of data blocks

for the VRLZ algorithm is presented in Fig.3b. As we can

see, at the beginning of each data block (except for the last

block) there is an 8-bit field holding the information about

the code parameters for the next block. This information is

necessary for the correct decoder operation, because it allows

us to separate consecutive blocks and determine the channel

code used in each block. As it was mentioned before, the

advantage of VRLZ algorithm is that it efficiently utilizes the

available redundant bits. However, the drawback of the VRLZ

is that the stream compressed with this algorithm cannot be

decompressed with the standard LZ’77 decoder. It would be

possible if we omitted the 8-bit code parameters information,

but then no error correction is possible. Nevertheless, the gain

in higher error resiliency and better utilization of available

redundant bits seems to be worth sacrificing backward com-

patibility.

Although the application of the VRLZ algorithm increases

error resiliency, it is still limited by the number of available

redundant bits. Another approach goes around this problem

by allowing to add some parity bits to the end of each block

of the compressed data. Fig. 3c depicts this block structure.

The proposed corresponding encoding algorithm, called CLZ,

looks as follows: the first phase of the CLZ algorithm is

the same as in the ELZ. The second phase is different in

such a way that if the encoder cannot embed all the parity

bits computed for the block i into the block i − 1 then the

remaining part of the parity bits is appended to the block

i − 1. At the beginning of each data block there is a length

indicator that holds the information how many bytes of not

embedded parity bits are added at the end of the block.

This method allows to use channel codes of fixed but higher

rates, and even though adding some parity bits directly to the

compressed stream reduces the compression ratio, the achieved

error resiliency could be much higher than in the case of the

ELZ algorithm. Another drawback, of course, is the lack of

backward compatibility.

Although the aforementioned algorithms use different block

structures, the basics of the decoding process are identical for

each of the algorithms. The decoder decodes the compressed

stream and retrieves the parity bits embedded into the block
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Fig. 4. Decoding process. Retrieving of the embedded bits allows correcting
of potential block errors.
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Fig. 5. Average decoder output errors as a function of decoder input errors.

i and uses them to correct the block i + 1 if it is possible.

Fig.4 presents the basics of the decoder’s operation. Obviously

the operations executed by the decoder for the CLZ and

VRLZ algorithms include more than just retrieving embedded

parity bits. In the VRLZ method the decoder at first has to

read the code parameters field and separate the corresponding

blocks. Only after that it is possible to retrieve the embedded

information correctly. In the CLZ algorithm the decoder has

to read the block’s length indication field and append the

remaining parity bits to the ones retrieved from the block.

IV. EXPERIMENTAL RESULTS

In the evaluation of the proposed solutions a simple scenario

was simulated. This scenario included the encoder and decoder

corresponding to the selected algorithm and a file corruption

block. The function of the file corruption block was to inject

statistically independent errors into the compressed stream.

The number of errors was expressed as a percentage of bit

errors in the compressed stream. The file used for performing

compression and decompression was a bit map picture (.bmp)

file of size of approximately 130 KB. The selection of this file

was based on previous studies carried out in [5]. The bit map

file had a decent number of redundant bits available, therefore

better error resiliency can be achieved. This allowed for better

presentation of the advantages of the proposed algorithms.

TABLE I
REED-SOLOMON CODES PARAMETERS AND CORRESPONDING

COMPRESSION RATIOS FOR DIFFERENT ALGORITHMS

Algorithm Reed-Solomon Compression Ratio
Code parameters

LZ’77 No channel code 18.79%
LZSS No channel code 14.20%
ELZ (255,211) 18.83%
CLZ (255,197) 19.34%

VRLZ (255,197) 18.93%
ELZSS (255,205) 14.24%

VRLZSS (255,179) 14.33%

TABLE II
COMPARISON OF VRLZ AND VRLZSS ALGORITHMS

First Data Block VRLZ VRLZSS
Code parameters

RS(255,225) Compression Ratio 18.91% 14.30%
Total no. of bits available 61311 65836

Average no. of bytes per block 59.04 76.70
Min. no. of bytes in block 36 62

RS(255,195) Compression Ratio 18.93% 14.32%
Total no. of bits available 61315 65803

Average no. of bytes per block 58.94 76.53
Min. no. of bytes in block 40 56

RS(255,165) Compression Ratio 18.96% 14.35%
Total no. of bits available 61306 65815

Average no. of bytes per block 58.93 76.62
Min. no. of bytes in block 36 54

The graph in Fig. 5 shows the relation between percentage

of bit errors on input of the decoder and average percentage

of bit errors on output of the decoder. Curves representing

the results for the LZ’77 and LZSS algorithms are given for

reference. As it can be noticed, to some point the percentage

of output errors is equal to zero or almost zero for the curves

related to joint source-channel coding algorithms. However,

if the percentage of errors on decoder’s input exceeds this

point, the percentage of output errors starts to rise dramatically

to reach its maximum value of about 50%. This point is

determined by the channel code used, whereas the parameters

of the code depend on the number of available redundant

bits. Different compression algorithms allowed using different

channel codes. The channel code parameters for each algo-

rithm are presented in Table I along with the corresponding

compression ratio. The VRLZSS algorithm is a LZSS variant

of the VRLZ algorithm. Since the channel codes used in the

VRLZ and VRLZSS algorithms are variable, the code rates

for these algorithms included in Table I are an integer part of

a code rate averaged over all the codes used. Analysis of Table

I and Fig.5 leads to the conclusion that the CLZ, the VRLZ

and also VRLZSS algorithms achieve higher error resiliency

than the ELZ and ELZSS algorithms. However, there is a

cost of slightly lower compression ratio and lack of backward

compatibility. The results presented in Table I show that the

degradation of compression ratio due to application of the joint

source-channel algorithms is minimal. The results presented

in Fig. 5 and in Table I prove what was expected i.e. better

utilization of available redundant bits by using the VRLZ or

CLZ algorithm as compared to the ELZ algorithm.

Table II presents the comparison of the VRLZ and the

VRLZSS algorithms in terms of compression ratio, total

number of available redundant bits and average number of

redundant bytes per block and minimal number of redundant

bytes among all the blocks. This comparison is made for three

channel codes of different rates. The minimum number of

redundant bytes in a block is an important parameter because

it determines the minimal number of errors in the block that

can prevent from correctly decoding the data. The value of

this parameter in Table II does not take into account the code
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Fig. 6. Probability of decompression failure as a function of percentage of
errors on decoder input.

parameters of the first block. An average number of redundant

bytes per block serves as a reference to a coder with fixed

parameters. By analyzing the content of Table II we can come

to the conclusion that there exists a certain channel code used

for the first block that maximizes the minimal number of bytes

in a block for the VRLZ algorithm. The situation is a little

bit different for the VRLZSS algorithm, namely, the higher

the code rate the greater the minimal number of redundant

bytes in the block. However, the higher the code rate the

less protected the first block is. Comparing other parameters

we can see that the VRLZSS offers better compression ratio

and also greater number of available redundant bits than the

VRLZ algorithm. It is so, because the LZSS algorithm parses

the input stream more slowly, i.e. for the matching phrase of

length l the window content for the LZSS algorithm is shifted

by l positions to the left, whereas for the LZ’77 algorithm this

shift is equal to l+1 positions. Since the LZSS encoder step is

smaller, the dictionary (search buffer) fills up more slowly so

there is higher probability of finding more copies of the same

phrase than in the LZ’77 algorithm. This leads to a higher

number of redundant bits available.

Fig. 6 presents the probability of decompression failure as

a function of percentage of errors on decoder’s input. As

we can see, the worst error resiliency is achieved by the

ELZ algorithm. The probability of successful decompression

is above 0.9 if the errors on input do not exceed 2.6% for

this algorithm. For the CLZ algorithm the percentage of input

errors, if we aim to achieve more than 0.9 probability of

successful decompression, cannot exceed 4%, whereas for the

VRLZ and VRLZSS algorithms this percentage cannot exceed

3.4% and 4.4% respectively. What is more, the probability of

an unsuccessful decompression increases more slowly for the

VRLZSS algorithm in comparison to other algorithms. These

results show that for the LZ’77 algorithm the optimal joint

source-channel coding algorithm in terms of error resiliency

and compression ratio is the VRLZ algorithm. The same

applies to the LZSS algorithms.

V. CONCLUSION

In this paper joint source-channel coding in dictionary

methods of data compression was analyzed. It was shown that

it is possible to exploit some redundancy left by compression

algorithms for error correction capabilities without the degra-

dation of compression. Several solutions on how to embed

information responsible for error correction, were presented.

In experimental studies the algorithms proposed in the

paper were compared. They proved that the ELZ algorithm

based on the algorithm described in [1] does not utilize

the redundant bits efficiently, but still it can be used in

situations where we are sure that the number of errors will

be low and we want to keep the backward compatibility of

the compression process. The results also showed that by

sacrificing the backward compatibility we can ensure better

error resiliency by allowing using channel codes with variable

parameters. The proposed VRLZ algorithm realized these

assumptions. Another approach was to use a channel code with

high error correction capabilities and embed as many parity

bits as we can into the compressed stream (CLZ algorithm).

It guaranteed better error resiliency at the cost of a slightly

degraded compression ratio.

Simulations were carried out on two compression algo-

rithms belonging to the family of dictionary methods, namely

LZ’77 and LZSS. The result presented in this paper are limited

to one file for better and clearer comparison of presented

algorithms. The conclusions made for tested file was verified in

more simulation carried out in [5].The obtained results proved

that the LZSS algorithm offered both better compression ratio

and more available redundant bits for the studied file. The

VRLZSS and ELZSS algorithms behaved better compared to

their LZ’77 variants VRLZ and ELZ, respectively.
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