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On Noise Analysis of Oscillators Based on

Statistical Mechanics
Tina Thiessen and Wolfgang Mathis

Abstract—In this paper a new approach of thermal noise
analysis of electronic oscillators is presented. Although nonlinear
electronic oscillators are one of the most essential subcircuits in
electronic systems typical design concepts for these oscillators
are based on ideas of linear circuits. Because the functionality of
oscillators depends on nonlinearities, advanced design methods
are developed where nonlinearities are an integral part. Since
low voltage oscillator concepts have to be developed in modern
IC technologies there is a need to include at least thermal noise
aspects into the design flow. For this reason we developed new
physical descriptions of thermal noise in electronic oscillators
where we use ideas from nonequilibrium statistical mechanics as
well as the Langevin approach. We illustrate our concepts by
some examples.

Keywords—Nonlinear oscillators, thermal noise, statistical me-
chanics.

I. INTRODUCTION

A
NALOGUE electronic oscillators are essential compo-

nents of communication and computer systems such that

systematic design methods are needed in order to adapt the

circuit parameters to the prescribed specifications using some

circuit simulation cycles. Especially if we use microelectronic

technologies in GHz era, high costs can arise. In oscillator

circuits we have to expect two difficulties:

1) The circuit functionality is nonlinear that is nonlinear

modelling concepts are needed where additional par-

asitic perturbations occur and frequency coupling is a

characteristic phenomenon [1].

2) Different kinds of noise (incl. thermal noise) appear but

in contrast to linear circuits in nonlinear circuits the

stochastic moments of the probability distribution are

coupled [2].

Furthermore nonlinear oscillators are dissipative systems

with limit cycles and therefore these circuits are not near an

equilibrium point but far from an equilibrium and bifurcations

under the influence of noise can occur [3]. Unfortunately al-

most no nonlinear differential equations exist where analytical

solutions can be used such that perturbation methods have to

be applied. In section 4 we consider a whole class of equations

where the limit cycle can be formulated explicitly.

Noise in self-sustained oscillators will spread the δ-function

spectrum of an ideal oscillator into a finite width, which is

also known as Lorentzian spectrum. Self-sustained oscillators

differ from ordinary nonlinear systems since the nonlinearities

cannot be regarded to be small and therefore neglected or
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linearized. With a classical, quasilinear treatment of noisy,

self-sustained oscillators the spectrum of the oscillator would

consist of a δ-function plus a background, which is not

satisfactory. Despite this fact, many common oscillator design

techniques are based on linear approaches.

One of the first articles about noise in oscillators was written

by Leeson [4] in the year 1966. After this approach the

line broadening of the spectrum is formed by a linear filter

arrangement which yields a spectrum in a Lorentzian shape.

One year later Lax [5] showed a more elegant derivation, after

which the line broadening can be obtained by introducing

the thermal noise in the nonlinear dynamics of the oscillator.

Therefore the Lorentzian shape is reasoned by the thermal

noise itself and doesn’t have to be reproduced by a linear

filter.

It should be mentioned that several concepts of noise

analysis of oscillators are developed but these authors consider

oscillators mainly from a mathematical point of view and use

concepts from the mathematical theory of stochastic dynamical

systems; see e. g. Kärtner [6], Demir et al. [7] and Hajimiri

et al. [8]. A more recent approach in the same direction can

be found in Hong et al. [9] although the title of the paper

suggests a physical approach. In contrast to these papers we

developed a physical based concept of thermal noise analysis

for oscillators. Although we already published a new approach

for thermal noise analysis of nonlinear circuit (see e. g. Weiss,

Mathis [10]) it is only suitable for nonlinear circuits near

the thermal equilibrium. It is well-known that circuits and

systems where a limit cycle arises are in a state far from

equilibrium. Therefore we present a new approach for thermal

noise analysis for circuit in this regime.

II. EARLY CONCEPTS OF BROWNIAN MOVEMENT AND

NOISE

Since the early days of electronic circuits its noise properties

became a main subject of research in physics and engineering.

Probably Schottky [11] was the first who considered noise

aspects of electronic devices (resistors and tubes) in order

to find out limits of signal transmission in tube amplifiers.

Following Einstein’s modeling of the Brownian motion Schot-

tky identified the quantized matter and especially the charge

into electrons as fundamental reason behind the fluctuations

of voltages and currents in electronic arrangements. In his

first studies Schottky was mainly interested in the so-called

shot-noise, however, he observed also other noise aspects

including the thermal noise. Although Schottky suggested

an interesting mathematical technique for noise analysis he
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failed because of a mistake in his calculations. It was noticed

and corrected by Johnson [12]. Additionally to the shot-noise

effect Schottky and others consider [13] also the so-called

flicker noise effect - 1/f-noise - but thermal noise was not

discussed until Nyquist [14] and Johnson [15], [16] published

some fundamental results with respect to this kind of noise.

Nyquist presented a so-called ”Gedanken” experiment where

he derived his well-known noise formula for linear Ohmian

resistors. For his consideration Nyquist used ideas from equi-

librium thermodynamics where the arrangement consisting of

resistors and a transmission line was constructed by means of

the measurement arrangement of Johnson.

Even though these discussions of noise in electronic circuits

applied ideas from Brownian motion both, the technical and

the physical discipline, were studied in a separate manner for

a long time because of the different motivations. Maybe a

remark of Einstein was the reason that thermal fluctuations

of electrical currents became not essential subject in physics

at that time. In a paper [17] from 1906 he mentioned this

effect for the first time but he considered these fluctuations

as ”uncontrollable” and consequently further studies about

this subject as ”useless”. Later on G. de Haas-Lorentz the

daughter of H. A. Lorentz showed in her dissertation [18]

that a modification of a technique of Einstein can be used

to analyze the noise behavior of linear circuits consisting of

resistors, capacitors and inductors whereby she was able to

derive a certain case of Nyquists’s formula; see also Matare

[19]. Unfortunately the results of de Haas-Lorentz became

widely unknown so her approach was reinvented by Nyquist

more than ten years later. At the same time Kolmogorov

[20] developed a new mathematical concept of the stochastic

processes where he used measure theory and previous research

of Markov, Khintchine, Wiener, Levy and others. Later on

Khintchine [21] and Wiener [22] presented a correlation theory

of stationary stochastic processes which became the basis of

the noise theory of linear time-invariant systems.

In contrast to the linear Brownian movement and noise

processes in linear time-invariant systems first discussions

about nonlinear cases were presented by Kramers [23] and

later on by MacDonald [24], Stratonovich [25] and van

Kampen [26]. However the problem of noise analysis in

nonlinear systems is much more involved than in linear cases.

From a physical point of view we have to distinguish external

and internal noise effects. Whereas external noise can be

analyzed by using standard mathematical techniques that is

transformation of stochastic processes (see e.g. Stratonovich

[25]), internal noise has to be studied by special mathematical

techniques with a useful physical interpretation. Even in the

case of weak nonlinear systems close to a thermal equilibrium

a corresponding theory was completed at the end of the last

century by van Kampen [27], Stratonovich [28] and many

others; it is denoted as nonlinear non-equilibrium statistical

thermodynamics. Based on this theory Weiss and Mathis

[29], [30] developed a noise theory for nonlinear reciprocal

electrical circuits near a thermal equilibrium. Unfortunately

there are many nonlinear systems do not work near to

a thermal equilibrium state but far-from-equilibrium. For

example, electrical systems driven by energy sources as well

as nonlinear oscillations or - in mathematical terms - limit

cycles are working in non-equilibrium states. These dynamics

have to be interpreted as so-called dissipative structures in the

sense of non-equilibrium thermodynamics which became also

a central subject of Haken’s synergetics [31]. One of the most

interesting properties of electronic oscillators is phase noise

and the close related line-broadening effect in the frequency

domain where many applications in RF CMOS circuit design

exist; a recent discussion and further references as well as

measurement results can be found e. g. in Magierowski and

Zukotynski [28].

In the following sections we will discuss the fundamental

aspects of nonlinear non-equilibrium statistical thermodynam-

ics near an equilibrium state and in a far-from-equilibrium

state. We emphasize such methods that can be applied to

nonlinear electrical and electronic circuits.

III. NOISE IN NONLINEAR CIRCUITS NEAR A THERMAL

EQUILIBRIUM STATE

A. The Langevin and the Fokker-Planck Equation

In statistical mechanics Boltzmann introduced a (scalar)

density function depending of positions and momentums and

derived a corresponding equation of motion. The deterministic

behaviour of a system can be described by a set of differential

equations or state space equations

dx

dt
= F (x), (1)

where F :Rn → Rn. If we are interested in the dynamics of a

suitable class of density functions f :Rn → R a corresponding

evolution equation can be formulated using an associated

Frobenius-Perron-Operator P t.

f(x, t) = P t{f(x)}. (2)

P t is the solution operator of the generalized Liouville equa-

tion
∂f

∂t
= −div(fF ) = −

n
∑

i=1

∂(fFi)

∂xi
. (3)

The Langevin approach of stochastic systems starts with a de-

terministic description and an additional stochastic process ξ.

dx

dt
= F (x) + σ(x)ξ, (4)

where the coefficient σ(x) characterizes the coupling of the

deterministic system and the noise sources. The first term

on the right should be interpreted as dissipation whereas the

second term corresponds to fluctuations.

Using the concept of stochastic differential equations ξ has

to be a generalized white noise process since the solution x
should be a Gaussian stationary stochastic process. However

in order to solve these equations a more generalized concept

of integration is needed. Essentially there are two concepts of

stochastic integration which are due to Ito and Stratonovich,

respectively, and associated types of stochastic differential

equations

dx = F (x)dt+ σ(x)dw, (5)
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where w is the so-called Wiener process. Both concepts are

mathematically equivalent to a partial differential equation

for the probability density f of Fokker-Planck type which

generalizes in some sense the concept of the generalized

Liouville equation (3) (see Arnold [32] section 4.2)

∂f

∂t
= −

n
∑

i=1

∂(fFi)

∂xi
+

n
∑

i=1

∂2(σ2f)

∂xi∂xj
. (6)

In the case of linear stochastic differential equations - the

original subject of Langevin - there is no difference be-

tween Ito’s and Stratonovich’s type; see e. g. van Kampen

[33]. Unfortunately stochastic differential equations (of Ito or

Stratonovich type) are consistent only from a mathematical

but not from a physical point of view if we consider nonlinear

Langevin equations. The reason is that each type corresponds

to a certain interpretation rule; otherwise its meaning is not

well defined. It is interesting to see that for nonlinear Langevin

equations in contrast to linear ones the deterministic equation

(without noise) does not correspond to the averaged equation

(see van Kampen’s paper [26] for further details)

〈dx

dt

〉

=
d〈x〉

dt
= 〈F (x)〉 + 〈σ(x)ξ〉. (7)

Even if σ(x) is constant we note that the function F (x) and

the statistical average operator 〈.〉 do not commute in every

case. Only if 〈F (x)〉 = F (〈x〉) is valid, that is the linear

case, the averaged equation for the first moment 〈x〉 of x is

structural identical with the deterministic equation ẋ = F (x).
Using an argument from the perturbation theory we find out

that there is coupling of the first moment of the stochastic

process with its higher moments. Therefore it is not clear why

the dissipation term should be identical to the vector field of

the deterministic equation; see van Kampen [26], [34]. In order

to obtain a sound description of physical systems additional

considerations are needed. In the next section we will discuss

some ideas in this direction with respect to nonlinear and noisy

electronic circuits.

B. The Stratonovich Approach and Nonlinear Reciprocal Cir-

cuits

It was discussed in the previous section that in the nonlinear

Langevin approach deterministic differential equations are

extended by a stochastic part with an additive white noise

process. Although the stochastic part can be cancelled if the

coupling coefficient σ(x) between the deterministic system

and the white noise process will be set to zero, the equivalence

of the deterministic equation and the differential equation

for the first moment of the describing quantity get lost.

The reason is simply that in nonlinear stochastic systems a

coupling of moments occurs which is similar to the coupling of

frequencies in nonlinear deterministic systems (e.g. distortion

in almost nonlinear amplifiers or nonlinear oscillators). There-

fore the mathematical procedure of the Langevin approach

for nonlinear deterministic systems can be justified but there

are problems with its physical interpretations. Following van

Kampen [27] and Stratonovich [28] a physical reasonable

approach for a large class of nonlinear noisy electrical circuits

was presented by Weiss and Mathis [29], [30], [35]. In the

following we will give a short survey of the main ideas of

this approach.

Since in the nonlinear extension of the Langevin approach

serious problems with its physical interpretation occur one

must describe the evolution of the entire system as a stochastic

process (see van Kampen [27], p. 184). If it is reasonable

to associate the Markov property to the describing variable

x(t) then the evolution equation is a so-called master equation

having the general form

∂P (x, t)

∂t
=

∫

(

W (x|x′)P (x′, t)−W (x′|x)P (x, t)
)

dx′, (8)

where P (x, t|x0, t0) is the transition probability between t0
and t, while W (x|x′)∆t is so small that P does not vary too

much, but large enough for the Markov property (see van Kam-

pen [27], p. 184). For solving the integro-differential equa-

tion – equivalent with the so-called Chapman-Kolmogorov

equation – several approaches are available which result in

approximate solutions near the thermodynamic equilibrium.

For rather complex systems it is suitable to use Stratonovich’s

approach that solved the master equation with the so-called

Kramers-Moyal expansion and derived the following equation

∂P (x, t)

∂t
=

∞
∑

m=1

(−1)m

m!

r
∑

α1...αm=1

∂m

∂xα1
. . . ∂xαm

[

Kα1...αm
(x)P (x, t)

]

. (9)

In order to apply this equation to a noisy physical system

the coefficients Kα1...αm
(x) have to be determined as func-

tions of the deterministic system parameters. Using ideas of

Stratonovich a corresponding procedure for nonlinear noisy

electrical circuits is presented by Weiss and Mathis [29], [30],

[35]. In the following the main steps are described.

It is known from equilibrium thermodynamics that the

m-fold moments are proportional to kT where k is

Boltzmann’s constant and T is the absolute temperature.

Stratonovich assumed that the same must hold for (condi-

tional) non-equilibrium moments (in a ”certain neighbour-

hood” of equilibrium) and therefore for the unknown co-

efficients Kα1...αm
∞(kT )m−1. Hence Stratonovich used an

expansion with respect to the small parameter kT . Since the

equilibrium case must be enclosed in the non-equilibrium

theory, the equilibrium distribution (Gibbs distribution)

Peq(x) = Ce−Ψ(x)/kT

must be a stationary solution of the master equation (and its

Kramers-Moyal expansion) where Ψ denotes Helmholtz free

energy. Near the equilibrium a similar relation between P (x)
and Ψ should be valid. Following Stratonovich we choose

P (x) = Ce−(Ψ(x)−yx)/kT , (10)

where y = ∂Ψ/∂x denotes the so-called conjugate thermody-

namic forces.

The deterministic equations impose additional constraints on

the coefficients Kα1...αm
. Finally the Onsager-Casimir reci-

procity relations of linear non-equilibrium thermodynamics
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(see e.g. Casimir [36]) can be used to reduce the number of

unknown coefficients. These relations are a consequence of

the time reversal symmetry on the microscopic level.

In a series of papers Weiss and Mathis (see e.g. also the

monograph of Weiss [35]) adapted Stratonovich’s approach to

nonlinear noisy electrical circuits. They showed that the so-

called topologically complete electrical circuits represent the

most comprehensive class of circuits that can be described by

Stratonovich’s approach. This class of networks was charac-

terized mathematically for the first time by Brayton and Moser

[37]

Lρ(iρ)
diρ
dt

=
∂B(i, u)

∂iρ
(= 1, . . . , r),

Cσ(iσ)
duσ

dt
=

∂B(i, u)

∂uσ
(σ = 1, . . . , s), (11)

where the so-called (Brayton-Moser) mixed potential

B(i, u) = Σ(i) − Π(u) + (i,Γu) is related to the dissipative

parts Σ (current potential) and P (voltage potential) as well

as Γ (interconnection) of a circuit.

If currents iρ through inductors and voltages uσ across

the capacitors of topologically complete electrical circuits are

used as state space variables xα of the Stratonovich approach

different approximations of the master equation with Kramers-

Moyal expansion can be derived for circuits of this class. As

free energy Ψ(x) the energy relation for all r inductors and s
capacitors

Ψ(i, u) =
1

2

r
∑

ρ=1

Lρ(iρ)i
2
ρ +

1

2

r+s
∑

σ=r+1

Cσ(uσ)u
2
σ (12)

is used. In the case of linear noisy electrical circuits a first

order Fokker-Planck type equation for the probability density

P (i, u) has been derived by Weiss and Mathis [30]

∂P (i, u)

∂t
= Λ1P (i, u) (13)

where

Λ1 = −
∑

ρ1,ρ2

∑

ρ1,ρ2
(0)

Lρ1

iρ2

∂

∂iρ1

−
∑

ρ1,ρ2

γρ1,σ2−r

Lρ1

uσ2

∂

∂iρ1

+

+
∑

ρ1,ρ2

γρ2,σ1−r

Cσ1

iρ2

∂

∂uσ1

−
∑

ρ1,ρ2

Πσ1σ2
(0)

Cσ1

uσ2

∂

∂uσ1

−

−kT
∑

ρ1,ρ2

∑

ρ1,ρ2
(0)

Lρ1
Lρ2

∂2

∂iρ1
∂iρ2

−kT
∑

ρ1,ρ2

Πσ1,σ2
(0)

Cρ1
Cρ2

∂2

∂uσ1
∂uσ2

(14)

and
∑

ρ1,ρ2
≡ ∂2Σ/∂iρ1

∂iρ2
, etc. It can be shown by

inspection that

Peq(i, u) = Ce−Ψ(i,u)/kT (15)

is a stationary solution of the first order equation, where

Ψ(i, u) is the free energy of an electrical circuit. Further-

more this is a partial differential equation for the probability

density P (i, u) of a Fokker-Planck type and therefore a set

of mathematical equivalent stochastic differential equations

(with Stratonovich’s interpretation rule) exists (ρ = 1, . . . , r,
σ = 1, . . . , s)

diρ =
(

∑

ρ2

∑

ρ1,ρ2
(0)

Lρ
iρ2

+
∑

σ

γρ,σ−r

Lρ
uσ

)

dt+

+

r+s+t
∑

k=r+s+t

±

√

2kTRk

L2
ρ

dwk (16)

duσ =
(

∑

σ2

Πσ1,σ2
(0)

Cσ
uσ2

−
∑

ρ

γρ,σ−r

Cσ
iρ

)

dt+

+

r+s+t+u
∑

l=r+s+t+1

±

√

2kTGl

C2
σ

dwl (17)

These relationships correspond to multidimensional Nyquist

formulas for linear noisy electrical circuits. If we consider

nonlinear noisy circuits in the linear-quadratic series approx-

imation of their nonlinearities, compared to the first order

equation an additional term occurs in the evolution equation

of the probability density

∂P (i, u)

∂t
= Λ1P (i, u) + Λ2P (i, u) (18)

where Λ2 is a third order differential operator; see Weiss and

Mathis [2]. Since the resulting partial differential equation

for the probability density function is more general than a

Fokker-Planck equation a corresponding stochastic differential

equation for the state space variables i and u not exists and

the Gaussian white noise source model approach fails. But

even if no third order derivatives occur just like in circuits

without inductors additional deterministic (drift) terms (dt-part

of stochastic differential equations) arise. If these terms are

omitted we get classical nonlinear Fokker-Planck equations

but then the Brillouin paradoxon can be constructed. This

means that the description does not satisfy the second law of

thermodynamics which is acceptable at most as approximation

under certain conditions (see also Wyatt and Coram [38]) It

was emphasized by Weiss and Mathis that their noise theory

for nonlinear electrical circuits can be used to explain and to

quantify the restrictions of the classical noise source picture.

Applying this framework Weiss and Mathis [39] were able

to show that the thermal noise spectra of most of all semi-

conductor devices can be reconstructed by using its nonlinear

characteristics. The known thermal noise spectra are derived

by microscopic balance calculations; e. g. van der Ziel [40].

IV. NOISE IN NONLINEAR SYSTEMS

FAR-FROM-EQUILIBRIUM

A. Oscillatory Circuits and Canonical Dissipative Systems

In section 1 it was already discussed that some oscillations

of a nonlinear system are related to so-called limit cycles. Such

solutions of nonlinear autonomous differential equations

ẋ = f(x), f :Rn → Rn (19)

exist if periodic solutions xL(t) are isolated where each

solution x(t) in the ”neighbourhood” of xL(t) converge to it
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asymptotically. Unfortunately it is not easy to find out whether

a differential equation possesses limit cycle solutions. Only for

n = 2 rather simple criteria exist but for n > 2 a bifurcation

approach has to be used Jordan and Smith [41].

If we would like to study nonlinear differential equations

which possess a limit cycle under the influence of noise, the

situation is even more complicate. Since in linear dynamical

systems the so-called Langevin approach is successful where a

white noise term is added and stochastic differential equations

(SDE) arise, the situation is not so simple in nonlinear cases.

It is already known since around 1960 (see e.g. van Kampen

[26]) that an additive white noise term leads to physical

inconsistencies in nonlinear dynamical systems. But even if

we ignore this problem, methods from statistical mechanics,

that is especially the ensemble approach, cannot be applied

because a Hamilton description is needed. Since limit cycles

in nonlinear systems can be interpreted as special cases of so-

called dissipative structures, a Hamilton description where the

energy is preserved cannot exist. However there is a certain

class of nonlinear differential equation which can be described

as generalized Hamilton systems; this class of systems is called

canonical-dissipative systems (CD systems). Although these

systems were developed in physics many years ago, they are

unknown to many researchers and therefore we give a short

overview about this concept.

The CD systems are based on the classical Hamilton de-

scription for energy preserving systems

dq

dt
=

∂H

∂p
,

dp

dt
= −

∂H

∂q
, (20)

where H is the Hamiltonian function depending on the state

space coordinates q and p and the partial differential operators

correspond to gradient operators. The energy of such a system

is preserved and H(q(t), p(t)) = E defines an energy surface.

The energy E is fixed by the prescribed initial conditions q(t0)
and p(t0) in the initial time t0 and corresponding solutions of

the above Hamilton equations which define trajectories on the

energy surface.

The canonical-dissipative systems are extended Hamiltonian

systems since a certain dissipative term is added to the differ-

ential equation of p, that is, we have (see Ebeling, Sokolov

[42])
dq

dt
=

∂H

∂p
,

dp

dt
= −

∂H

∂q
− g(H)

∂H

∂p
, (21)

where the ”dissipation function” g depends only on the Hamil-

tonian H . In general the energy of a CD system does not

conserve the energy because we have:

dH

dt
= −g(H)

∥

∥

∥

∥

∥

∂H

∂p

∥

∥

∥

∥

∥

2

. (22)

Only if we consider a trajectory (q(t), p(t)) with initial

conditions (q(t0), p(t0)) where E0 = H(q(t), p(t)) is a zero

of g the energy is preserved. Discussing dH/dt the energy

of the system increases for trajectories where g < 0 and

decreases if g > 0, that is, we have dissipation in the system.

Obviously the trajectory leading to g(E0) = 0 is a limit

cycle of the CD system. On the other hand this trajectory can

be expressed by means of the corresponding level function

g̃(q, p) = g(H(q, p)) = 0. A nice example of a CD system is

the Rayleigh-van Pol equation

ẍ+ (x2 + ẋ2 − 1)ẋ+ x = 0. (23)

This equation can easily be derived from the Hamiltonian

function H if we choose H(q, p) = (q2 + p2)/2 and g(H) =
2(H − 1/2) where q ≡ x and p ≡ ẋ. The trajectory in state

space of the limit cycle is a circle g̃(q, p) = q2 + p2 where

q(t) = cos t and p(t) = sin t parameterize this trajectory.

The concept of CD systems together with some applications

in the dynamics of swarms are considered by e. g. Ebeling and

Sokolov [42] where also a more general concept of CD sys-

tems is presented using other invariants (e. g. total momentum

and total angular momentum) of mechanical systems. For our

purposes we restrict us to CD systems where only the energy

is considered.

We emphasize that the above mentioned Rayleigh-van der

Pol equation and some further extensions of this equations

and its electrical realizations are discussed by Philipow and

Büntig [43]. Although these equations are very nice toys for

fundamental studies because at least the limit cycle can be

given explicitly the corresponding oscillator circuits were not

used in electronic applications until now. However there are

mathematical techniques to derive an approximate CD system

for an oscillatory system. E. g. with the so-called phase-

averaging technique of Klimontovich [44] a corresponding CD

system for the van der Pol equation can be derived.

B. Stochastic Canonical Dissipative Systems

We have shown in the last section that CD systems are very

useful for fundamental studies of nonlinear oscillators. Also

the stochastic variant of CD systems shares this advantage.

Since this class of systems were extended from Hamiltonian

systems it is possible to generalize concepts from statistical

mechanics for the equilibrium to far-from-the-equilibrium

systems. Actually it was shown that the so-called micro-

canonical ensemble theory – construction of a corresponding

probability density – can be generalized to these systems.

The reason behind is that the special of dissipation drive

the system to certain subspaces of the energy surface. In

many cases the system is ergodic on this surface. Then a

non-equilibrium ensemble on a slightly extended energy shell

can be defined. However there are fundamental differences

between equilibrium and non-equilibrium cases. Most of the

typical properties of an equilibrium ensemble are related to the

energy which comes from the thermal fluctuation. Especially

the mean energy is proportional to the temperature T –

characterize the energy in the thermal bath – and also the

mean quadratic derivation depends on T and is proportional to

T 2. In contrast to that, the energy of the nonlinear excitations

and the noise energy are decoupled in non-equilibrium, that

is, the mean energy is proportional to the properties of the

energy source which is nearly independent from the thermal

noise level, which is denoted by D in non-equilibrium. As

a result the equilibrium canonical distribution function is not

compatible to these properties but a distribution similar to the
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Gaussian distribution can be constructed; further discussion

can be found by Ebeling and Sokolov [42].

Alternatively to the concepts from statistical mechanics we

can use a stochastic generalization of the CD systems. In

addition to the dissipative term a white noise term, where

the coefficient depends only on H , is added. Therefore

the stochastic CD systems are described by the following

Langevin equations (or in mathematical terms a stochastic

differential equation (SDE))

dq

dt
=

∂H

∂p
,

dp

dt
= −

∂H

∂q
− g(H)

∂H

∂p
+
√

D(H)ξ(t) (24)

It turns out that the restriction of the coefficients g and

D leads also to simplifications. It is known that to each

Langevin equation a corresponding Fokker-Planck equation

for the probability distribution exists. For the stochastic CD

systems we have

∂ρ

∂t
+
∑

i

∂H

∂pi

∂ρ

∂qi
−
∑

i

∂H

∂qi

∂ρ

∂pi
=

=
∑

i

∂

∂pi

[

g(H)
∂H

∂pi
ρ+D(H)

∂ρ

∂pi

]

(25)

The stationary distribution ρ0 can be derived exactly (see

Ebeling and Sokolov [42])

ρ0(qi, pi) = Q−1 exp
(

−

∫ H

0

g(Ĥ)

D(Ĥ)
dĤ

)

(26)

where Q is the normalizing constant. In the case of a affine

function g(H) = 2(H−E0) (with E0 = 1/2) of the Rayleigh-

van der Pol equation we have

ρ0(qi, pi) = Q−1 exp
(2H(1−H)

2D

)

(27)

where E0 is a property of the energy source. In Fig. 1 a

probability density of a 2D system with a limit cycle is shown.

With Ebeling [45] we have to emphasize that CD systems

are a class of models, which in reality, strictly according to

their definition, practically do not exist. However there are

many complex systems and among them systems of central

importance which have several properties in common with CD

Fig. 1. 2D probability distribution ρ0.

systems as the support of the dynamics with free energy from

internal or external reservoirs which drives the system to a

state of non-equilibrium in an energy shell different from the

state of equilibrium.

Because of the fact that in CD systems the energy of

the nonlinear excitations and the noise energy are decou-

pled in non-equilibrium, a decoupled treatment of amplitude-

and phase fluctuations is possible. Therefore the orthogonal

treatment of amplitude- and phase fluctuations, which in

general cases must be realized by the averaging method by

Stratonovich [25] is physically justified for CD systems.

Finally we would like to add some comments about detailed

balance in nonlinear oscillatory systems. It was emphasized

in section 2.2 that this property is crucial for developing

Stratonovich’s noise theory of nonlinear systems near the

equilibrium. By means of the assumption of detailed balance

which is equivalent to reciprocity additional constraints for

the coefficients of the Fokker-Planck equation arise. Since

oscillatory circuits are not reciprocal systems Stratonovich’s

approach is not available for this class of systems. However

it can be shown that there is a certain class of nonlinear

stochastic dynamical systems where detailed balance is ful-

filled; see Langley [46]. Moreover San Miguel and Chaturvedi

[47] showed that the true implication of detailed balance

is not on the existence of a limit-cycle but rather on its

physical character. We find that detailed balance implies that

the limit cycle has a reversible or conservative character which

corresponds to the case limit cycles in CD systems. If detailed

balance is absent we may classify the limit cycle as irreversible

or dissipative.

V. NOISE ANALYSIS OF NONLINEAR OSCILLATORS

Now we discuss the line broadening of nonlinear oscillators

disturbed by thermal noise sources described by a Langevin

type equation. We concentrate primarily to a specific type

of nonlinear oscillators such as the van der Pol oscillator,

which is discussed in a variety of works [1], [5], [48]. Self-

sustained oscillators differ from ordinary nonlinear systems

since the nonlinearities cannot regarded to be small and

therefore neglected or linearized. With a classical, quasilinear

treatment of noisy, self-sustained oscillators the spectrum of

the oscillator would consist of a δ-function plus a background.

This is not satisfactory for our purposes. We anticipate that

the noise will spread the δ-function spectrum of an ideal

oscillator into a finite width, which is also known as Lorentzian

spectrum [5]. The reason for the ability to talk about signal

plus noise in ordinary nonlinear is that these systems are

stable. The stability of the amplitude of a noisy oscillator

can be explained by the back-drifting force of the limit cycle.

The phase fluctuations instead cannot be regarded to be stable,

because there is no cost of energy to pass from one transient

solution of the SDE to another.

A. Evolution of Limit Cycles in a Noisy van der Pol Oscillator

As mentioned above we consider the noisy van der Pol equa-

tion from a Langevin point of view such that corresponding
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Fig. 2. Phase plane representation of several solutions of DEQN.

SDE has the form

ẍ− ǫ(1− x2)ẋ+ ω2
0x = Kξ(t), (28)

where ξ(t) is an additive, white gaussian noise connected

with the damping factor through the dissipation-fluctuation

theorem. To study the evolution of the limit cycle it is useful

to look at a van der Pol type equation below

ẍ+ (α + βx2)ẋ+ ω2
0x = Kξ(t). (29)

The equivalent description with a first order system is

ẋ = y (30)

ẏ = −ω2
0x− (α+ βx2)y +Kξ(t). (31)

We assume the nonlinearity of the oscillator to be small, so

that the solution of the deterministic differential equation (29)

without stochastic process ξ(t) can be modelled as a small

perturbation of the orbital linearized solution (see Fig. 2).

Therefore a description of nonlinear systems with limit

cycles in polar-coordinates is meaningful.

x = R cos(ω0t+ φ) = R cos(θ) (32)

y = −ω0R sin(ω0t+ φ) = −ω0R sin(θ) (33)

Fig. 3. 3D probability distribution for α = 0.1.

Fig. 4. 3D probability distribution for α = −0.1.

The amplitude equation can be derived to

Ṙ = −(α+ βR2 cos2 θ)R sin2(θ)−
K

ω0
ξ(t) sin(θ). (34)

Because of the fact that the amplitude fluctuations are slow

compared to the oscillatory term, the higher harmonics can be

neglected. With setting the phase constant to a representative

value, one can approximate the radial distribution with the

solution of the stationary Fokker-Planck equation [12].

P (R, φ = const., t) = P0 exp
[

−
α

4D
R2 −

β

32D
R4

]

(35)

The diffusion coefficient D is associated with the random

force F (t) = K/ω0ξ(t) sin θ in the kind 〈F (t)F (t′)〉 =
= 2Dδ(t− t′), where again the oscillatory terms were ne-

glected. P0 is the normalization coefficient and can be derived

with the reciprocal of the area under each distribution.

In Fig. 3 one can see the gaussian distribution around the

origin. As the parameter α changes from positive to negative it

develops a Gaussian ring shape distribution (see Fig. 4) which

leads to a limit cycle.

B. Power Spectral Density of a Noisy van der Pol Oscillator

Now we discuss the line broadening of a noisy van der Pol

oscillator with the sde (28). To study the power spectral den-

sity, the state variable x(t) can be approximate by neglecting

amplitude fluctuations with

x(t) =
R

2
exp(j(ω0t+ φ)) = x0 exp(j(ω0t+ φ)) (36)

for further studies. The amplitude and phase equations of the

van der Pol oscillator can be determined by

Ṙ = ǫ(1−R2 cos2(ω0t+ φ))R sin2(ω0t+ φ)−

−
K

ω0
ξ(t) sin(ω0t+ φ) (37)

and

φ̇ = ǫ(1−R2 cos2(ω0t+ φ)) sin(ω0t+ φ) cos(ω0t+ φ)−

−
K

Rω0
ξ(t) cos(ω0t+ φ). (38)
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Fig. 5. Weak noise-induced amplitude fluctuations.

In Fig. 5 and Fig. 6 one can see the amplitude fluctuations

of 20 sample trajectories derived numerically by the SDE

(37) with the Euler-Maruyama technique [49]. Because of

the nonorbital limit cycle of the van der Pol oscillator the

amplitude varies around the stationary solution 2. Neverthe-

less one can see the boundary of amplitude fluctuations by

the attracting behavior of the limit cycle. In Fig. 6 certain

trajectories concentrate around an amplitude −2.

This can be explained by the phase fluctuations shown in

Fig. 7 and 8. As supposed phase fluctuations cannot be limited

and show a diffusion behavior for increasing noise. Because of

the coupling between amplitude and phase fluctuations, some

trajectories concentrate around a shifted solution about 180

degree. Neglecting higher harmonics and setting the amplitude

constant in equation (38) the SDE of the phase dynamics

reduces to

φ̇ ≈ −
K

Rω0
ξ(t) cos(ω0t+ φ) = G(t) cos(ω0t+ φ), (39)

where G(t) is linear proportional to the gaussian process ξ(t).
With deriving the equivalent Fokker-Planck equation [50] and

Fig. 6. Strong noise-induced amplitude fluctuations.

Fig. 7. Weak noise-induced phase fluctuations.

determining the diffusion-coefficients for a long time interval

t ≫ 1, one can show, that the nonlinear SDE (39) matches with

the reduced, linear process (40) [5]. An alternative approach is

to determine the averaged amplitude and phase dynamics with

the averaging method by Stratonovich [25] and Bogoliubov

& Mitropolsky [51]. The averaging results in a decoupling

of amplitude and frequency dynamics. With neglecting the

amplitude fluctuations, it can be shown that the variance of the

phase increases linearly in time which expresses a ”simple”

diffusion process of φ and the reduced linear process

dφ

dt
= G(t) cos(ω0t) (40)

is applicable [48]. The phase displacement of the linear

process can be determined by

φ(t+ τ) − φ(t) ≈

∫ τ

t

G(s) cos(ω0t)ds. (41)

Assume x(t) to be a stationary process, the autocorrelation

Fig. 8. Strong noise-induced phase fluctuations.
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function Rxx(τ) can be derived to

Rxx(τ) ≈ x2
0 exp[jω0τ ]

〈

exp
[

j[φ(t+ τ)− φ(t)]
]〉

(42)

= x2
0 exp[−0.5j〈[φ(t+ τ) − φ(t)]2〉]. (43)

The last step can be explained by the characteristic function

of a gaussian process. The mean square displacement of φ can

be described by

〈[φ(t + τ)− φ(t)]2〉 ≈

≈

∫ t+τ

t

ds

∫ t+τ

t

ds′ cos(ω0s) cos(ω0s
′)〈G(s)G(s′)〉 (44)

With the Wiener-Khintchine theorem the autocorrelation

function (acf) of G(s) is

RGG(s− s′) =
1

2π

∫

∞

−∞

exp(jω(s− s′))SGG(ω)dω (45)

Using the fact that G(s) is an additive, white gaussian noise

with the acf RGG(s−s′) = SGG(ω0)δ(s−s′) inserted in eqn.

(44), the mean square displacement of φ is

〈[φ(t + τ)− φ(t)]2〉 =

=
1

2
SGG(ω0)

[

τ +
1

2ω0
2 cos(ω0(2t+ τ)) sin(ω0τ)

]

(46)

For ω0t ≫ 1 the second term in eqn. (46) can be neglected

and φ becomes a diffusion process like

〈[φ(t + τ)− φ(t)]2〉 =
1

2
SGG(ω0)|τ | = W |τ |. (47)

Inserting eqn. (47) in the acf (42) yield the one-sided power

spectral density (psd)

Sxx(ω) =

∫

∞

−∞

exp(−jωτ)Rxx(τ)dτ (48)

= x2
0

0.5W

(ω − ω0)2 + (0.5W )2
. (49)

In Fig. 9 one can see the normalized psd of the noisy van

der Pol oscillator for different noise factors K. As assumed

Fig. 9. Normalized psd of the noisy van der Pol oscillator.

the line-broadening in a Lorentzian shape is caused by the

thermal noise source itself and not by a linear forming of

filter arrangements.

VI. CONCLUSIONS

In this article some essential aspects of noise analysis

are discussed. It is shown that there is a main difference

between systems near the thermal equilibrium and far-from-

equilibrium. Although in physics these aspects are studied and

discussed since a long time these corresponding results are not

used in order to analyse and design electronic oscillators. One

of the most interesting properties of electronic oscillators is

phase noise and the close related line-broadening effect in

the frequency domain where very essential applications in

RF CMOS circuit design can be found. Detailed and early

discussions about these aspects were published by Lax [5].

In this article we discussed the line broadening of nonlinear

oscillators in some details and illustrated this concept by some

numerical calculations. But phase noise and line broadening

can be studied also by means of the concept discussed in

section 3. Therefore it seems that we are at the beginning

of new area of noise analysis of nonlinear circuits where also

physical concepts from statistical non-equilibrium thermody-

namics play an essential role.
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