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The New Insight into the Theory of 2-D Complex

and Quaternion Analytic Signals
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Abstract—The paper presents the overview of the theory
of 2-D complex and quaternion analytic signals with the
1
st-quadrant spectrum support. Both signals are expressed as

complex/hypercomplex sums of partial and total 2-D Hilbert
transforms. Moreover, starting with the definition of 2-D complex
and quaternion Fourier transforms, the 2-D Hilbert transforms
are derived in the form of sums of parts of different parity
with respect to signal-domain variables. Some new relations for
Hilbert quaternion spectra have been derived. The paper is
illustrated with the example of the 2-D separable Cauchy signal.
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I. INTRODUCTION

THE 2-D complex analytic signals have been defined by

Hahn [1] in the form of the 2-D inverse Fourier transform

of the single quadrant spectrum of a 2-D real signal. Since

the 2-D frequency space is divided into four quadrants, it is

possible to define four different analytic signals. They are two

and two conjugates which means that any 2-D real signal is in

fact represented by two complex analytic signals with single

quadrant spectra. The complete theory of multidimensional

analytic signals has been presented in [2]. An alternative

approach to the theory of analytic signals has been described

in [3]. The authors of [3] defined the quaternion analytic signal

as the inverse Quaternion Fourier transform of the single-

quadrant quaternion spectrum of a 2-D real signal. However,

it has been proved in [4] that both approaches (complex and

quaternion) are equivalent and their choice is a matter of

convenience.

The quaternion signals (not necessary analytic) have found

numerous applications in digital signal processing, especially

in color image processing. Some examples presented in Ap-

pendix A show their potential in different aspects. The 2-

D analytic signals (complex and quaternion), as equivalent

representations of a 2-D real signal, can be used to derive

its polar form comprising the local amplitude/amplitudes and

two or three phase functions. The respective formulas can be

found in [4]. This problem is out of the scope of the paper.

However, the information included in polar components of the

signal is wealth to be studied to get better knowledge about the

properties of a 2-D real signal. The possible area of practical

applications is medical image processing where problems of

orientation or edge detection are in spectrum of interest.

This paper focuses on some aspects of the theory of 2-D

analytic (complex and quaternion) signals and shows the above
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mentioned equivalence in terms of even-odd components of

2-D total and partial Hilbert transforms defined by Hahn in

[1]. The formulas relating complex and quaternion spectra of

Hilbert transforms are derived.

II. 2-D COMPLEX AND QUATERNION FOURIER

TRANSFORM

A 2-D real signal can be written as a sum of even-even (ee),

even-odd (eo), odd-even (oe) and odd-odd (oo) parts [2]:

u(x2, x1) = uee(x2, x1) + ueo(x2, x1) + uoe(x2, x1)+

+uoo(x2, x1), (1)

where

uee(·) =
u(x2, x1) + u(x2,−x1) + u(−x2, x1) + u(−x2,−x1)

4
,

(2)

ueo(·) =
u(x2, x1)− u(x2,−x1) + u(−x2, x1)− u(−x2,−x1)

4
,

(3)

uoe(·) =
u(x2, x1) + u(x2,−x1)− u(−x2, x1)− u(−x2,−x1)

4
,

(4)

uoo(·) =
u(x2, x1)− u(x2,−x1)− u(−x2, x1) + u(−x2,−x1)

4
,

(5)

Notice that in (1)-(5) we applied the reversed order of

subscripts: (x2, x1) instead of (x1, x2). It is due to the notation

introduced in [1], [2], where e represented a binary 0 and o
– a binary 1. It means that ueo(x2, x1) is an even function

with respect to x2 and an odd function with respect to x1.

The signs of terms in nominators in (2)-(5) are equal to

products of odd-indexed variables. For example in (3), we

have −u(x2,−x1) and −u(−x2,−x1) because this is an odd

function with respect to x1. On the other hand, in (5) we have

+u(−x2,−x1).
Fig. 1a shows the 2-D Cauchy signal: u(x2, x1) =

= ab
/(

a2 + (x1 − c)2
)(

b2 + (x2 − d)2
)

with a = 1, b = 2,

c = 1, d = 0.5. Figures 1b-e illustrate respectively its even-

even, even-odd, odd-even and odd-odd parts obtained directly

from (2)-(5).

A. The 2-D Complex Fourier Transform of a 2-D Real Signal

The 2-D Fourier transform (2-D FT) of (1) has the form:

F{u(x2, x1)} = U(f2, f1) =

=

∫∫

R2

u(x2, x1)e
−e1α1e−e1α2dx2dx1 (6)

where α1 = 2πf1x1, α2 = 2πf2x2 and the imaginary unit

in the exponent usually denoted with i or j is here replaced
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a) u(x2, x1)

b) uee(x2, x1)

c) ueo(x2, x1)

d) uoe(x2, x1)

e) uoo(x2, x1)

Fig. 1. a)-e): Mesh (left) and contour (right) plots of the 2-D Cauchy signal:
a = 1, b = 2, c = 1, d = 0.5.

with e1. As an example, the 2-D spectrum of the (separable)

Cauchy signal from Fig. 1 is given by the complex function:

U(f2, f1) = π2 exp(−2π(a|f1|+b|f2|)) exp(−j2π(cf1+df2)).

Fig. 2 shows its absolute value (amplitude spectrum).

The 2-D inverse FT is

F−1{U(f2, f1)} = u(x2, x1) =

Fig. 2. Mesh (left) and contour (right) plots of the amplitude spectrum
|U(f2, f1)| of the 2-D Cauchy signal: a = 1, b = 2, c = 1, d = 0.5.

=

∫∫

R2

u(f2, f1)e
e1α1ee1α2df2df1. (7)

The insertion of (1) into (6) yields the spectrum in the form

of a complex sum of four terms:

U(f2, f1) = Uee − Uoo − e1(Ueo + Uoe) (8)

where

Uee(·) =

∫∫

R2

uee(x2, x1) cosα2 cosα1dx2dx1, (9)

Ueo(·) =

∫∫

R2

ueo(x2, x1) cosα2 sinα1dx2dx1, (10)

Uoe(·) =

∫∫

R2

uoe(x2, x1) sinα2 cosα1dx2dx1, (11)

Uoo(·) =

∫∫

R2

uoo(x2, x1) sinα2 sinα1dx2dx1. (12)

The 2-D spectrum (8) can be expressed in the equivalent

form:

U(f2, f1) = Re(f2, f1) + e1Im(f2, f1) (13)

where

Re(f2, f1) = Uee(f2, f1)− Uoo(f2, f1), (14)

Im(f2, f1) = −Ueo(f2, f1)− Uoe(f2, f1). (15)

B. The Quaternion Fourier Transform of a 2-D Real Signal

There are various definitions of the Quaternion Fourier

transform (QFT). We apply the definition introduced by Ell

in [5] and called the two-sided QFT. The QFT and its inverse

are given by

QFT {u(x2, x1)} = Uq(f2, f1) =

=

∫∫

R2

e−e1α1u(x2, x1)e
−e2α2dx2dx1, (16)

QFT−1{Uq(f2, f1)} = u(x2, x1) =

=

∫∫

R2

ee1α1Uq(f2, f1)e
e2α2df2df1. (17)

The imaginary units e1 and e2 are elements of the basis

{e1, e2, e3} of the algebra of quaternions H – the algebra of

order 4 over the real numbers field R. The basic properties of

H are presented in Appendix A. The insertion of (1) into (16)

yields

Uq(f2, f1) = Uee − e1Ueo − e2Uoe + e3Uoo (18)

where all terms are given by (9)-(12) and e3 = e1e2 according

to the quaternion multiplication rules (see Appendix A).
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Fig. 3. Mesh (left) and contour (right) plots of v(x2, x1) of the 2-D Cauchy
signal: a = 1, b = 2, c = 1, d = 0.5.

C. The Pei Formula

There exists the formula relating the two-sided QFT (16)

and the 2-D FT (6) derived by Pei et al. in [6] and given by

Uq(f2, f1) = U(f2, f1)
1− e3

2
+ U(−f2, f1)

1 + e3
2

. (19)

If we insert (13) into the above formula we get

Uq(f2, f1) = Re(f2, f1)
1− e3

2
+ Re(−f2, f1)

1 + e3
2

+

+e1Im(f2, f1)
1 − e3

2
+ e1Im(−f2, f1)

1 + e3
2

(20)

It is easy to show that the insertion of (14) and (15) into

(20) gives immediately the definition (18).

III. THE 2-D HILBERT TRANSFORMS AND THEIR

COMPLEX SPECTRA

In this section, we briefly recall the basic elements of the

theory of 2-D analytic signals with single-quadrant spectra

presented by Hahn in [1] and [2]. We focus on the 2-D

complex analytic signal Ψ1(x2, x1) with a spectrum in the

first quadrant of the frequency space defined in [1] as the 2-D

inverse Fourier transform (7):

Ψ1(x2, x1) = F−1{(1 + sgnf1)(1 + sgnf2)U(f2, f1)} (21)

In (21), the operator 1(f2, f1) = (1 + sgnf1)(1 + sgnf2) is

a 2-D unit step used to limit the spectrum to the 1st quadrant

of the frequency space. In [1] and [2], the definitions of other

2-D complex signals with spectra in next three quadrants are

presented.

In the signal domain (x2, x1), the definition (21) corre-

sponds to the double convolution:

Ψ1(x2, x1) =

= u(x2, x1) ∗ ∗(δ(x1) + e1/πx1)(δ(x2) + e1/πx2) (22)

that is equivalent to

Ψ1(x2, x1) = u− v + e1(v1 + v2) (23)

where

v(x2, x1) = F−1{−sgnf1sgnf2 · U(f2, f1)} (24)

is the 2-D total Hilbert transform w.r.t. (x2, x1) and

v1(x2, x1) = F−1{−e1sgnf1 · U(f2, f1)}, (25)

Fig. 4. Mesh (left) and contour (right) plots of v1(x2, x1) of the 2-D Cauchy
signal: a = 1, b = 2, c = 1, d = 0.5.

Fig. 5. Mesh (left) and contour (right) plots of v2(x2, x1) of the 2-D Cauchy
signal: a = 1, b = 2, c = 1, d = 0.5.

v2(x2, x1) = F−1{−e1sgnf2 · U(f2, f1)} (26)

are 2-D partial Hilbert transforms w.r.t. variables x1 or x2

respectively. In Figures 3-5, the total and partial Hilbert

transforms of the 2-D Cauchy signal are presented. Due to

the separability of the signal and the invariance of its Hilbert

transforms in terms of translation in the signal domain, they

are given by the formulas:

v(x2, x1) = (x1−c)(x2−d)
/(

a2+(x1−c)2
)(

b2+(x1−d)2
)

,

v1(x2, x1) = b(x1 − c)
/(

a2 + (x1 − c)2
)(

b2 + (x1 − d)2
)

,

v2(x2, x1) = a(x2 − d)
/(

a2 + (x1 − c)2
)(

b2 + (x1 − d)2
)

.

A. Spectra of Total and Partial Hilbert Transforms

Directly from (24)-(26) we get the 2-D Fourier spectra of

total and partial Hilbert transforms:

V (f2, f1) = −sgnf1sgnf2 · U(f2, f1), (27)

V1(f2, f1) = −e1sgnf1 · U(f2, f1), (28)

V2(f2, f1) = −e1sgnf2 · U(f2, f1). (29)

In Section III, the above formulas will be introduced into

the Pei relation (19) to get the quaternion spectra of total and

partial Hilbert transforms.

B. Even and Odd Terms of Total and Partial Hilbert Trans-

forms (24)-(26)

Now, let us derive total and partial Hilbert transforms as

sums of their even-even, even-odd, odd-even and odd-odd

parts. We insert the Fourier transform U(f2, f1) given by (8)
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a) b)

c) d)

Fig. 6. Contour plots of (a) vee(x2, x1), (b) veo(x2, x1), (c) voe(x2, x1),
(d) voo(x2, x1) of the 2-D Cauchy signal: a = 1, b = 2, c = 1, d = 0.5.

a) b)

c) d)

Fig. 7. Contour plots of (a) v1ee(x2, x1), (b) v1eo(x2, x1), (c)
v1oe(x2, x1), (d) v1oo(x2, x1) of the 2-D Cauchy signal: a = 1, b = 2,
c = 1, d = 0.5.

into (24)-(26) and yield the following forms of the Hilbert

transforms (the full derivation is presented in Appendix B):

v1(x2, x1) = −v
(eo)
1ee

+ v
(ee)
1eo

− v
(oo)
1oe

+ v
(oe)
1oo

, (30)

v2(x2, x1) = −v
(oe)
2ee

− v
(oo)
2eo

+ v
(ee)
2oe

+ v
(eo)
2oo

, (31)

v(x2, x1) = v(oo)ee − v(oe)eo − v(eo)oe + v(ee)oo . (32)

Let us note that in (30)-(32) superscripts indicate the

even/odd parity of the corresponding term of U(f2, f1) (8),

while the subscripts – the even/odd parity of the corresponding

Hilbert transform. Fig. 6 shows respectively the even-even,

even-odd, odd-even and odd-odd parts of the total Hilbert

transform of the 2-D Cauchy signal. In Figures 7 and 8, the

decomposition of its partial Hilbert transforms into parts of

different parity is visualized.

a) b)

c) d)

Fig. 8. Contour plots of (a) v2ee(x2, x1), (b) v2eo(x2, x1), (c)
v2oe(x2, x1), (d) v2oo(x2, x1) of the 2-D Cauchy signal: a = 1, b = 2,
c = 1, d = 0.5.

IV. THE 2-D HILBERT TRANSFORMS AND THEIR

QUATERNION SPECTRA

Again, let us recall the elements of the theory of the

quaternion analytic signal defined in [3] as the 2-D inverse

QFT (17) of the 1st quadrant quaternion spectrum, i.e.:

Ψq(x1, x2) = QFT−1{(1 + sgnf1)(1 + sgnf2)Uq(f2, f1)},
(33)

i.e., using the same single-quadrant operator as in (21). Using

the definition of Ell [4] of the inverse QFT we have

Ψq(x2, x1) =

=

∫∫

R2

ee1α1(1 + sgnf1)(1 + sgnf2)Uq(f2, f1)e
e2α2df2df1.

(34)

Let us remark that there is an alternative definition of the

inverse QFT (called Right-side QFT) introduced by Ell [5] and

also used by Hitzer [4]. It differs from (34) by the order of

terms under the integral. In this case we have

Ψq(x2, x1) =

=

∫∫

R2

(1 + sgnf1)(1 + sgnf2)Uq(f2, f1)e
e2α2ee1α1df2df1.

(35)

In our investigations, we use the definition (34) that corre-

sponds in the signal domain to the convolution of the 2-D real

signal u(x1, x2) with the 2-D hypercomplex delta distribution

[6]:

Ψq(x2, x1) =

= u(x2, x1) ∗ ∗(δ(x1) + e1/πx1)(δ(x2) + e2/πx2) (36)

Exploding the above expression we get the definition of the

quaternion analytic signal with the 1st quadrant spectrum

support:

Ψq(x2, x1) = u+ e1v1 + e2v2 + e3v. (37)
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We observe in (37) that the same Hilbert transforms as in (23)

appear once again. In the next part, their quaternion spectra

will be derived.

A. Quaternion Spectra of Total and Partial Hilbert Transforms

In order to derive the quaternion spectra of total and

partial Hilbert transforms we apply the Pei formula (19). The

quaternion spectra of v, v1 and v2 respectively are

Vq(f2, f1) = V (f2, f1)
1− e3

2
+ V (−f2, f1)

1 + e3
2

, (38)

V1q(f2, f1) = V1(f2, f1)
1− e3

2
+ V1(−f2, f1)

1 + e3
2

, (39)

V2q(f2, f1) = V2(f2, f1)
1− e3

2
+ V2(−f2, f1)

1 + e3
2

(40)

where the Fourier spectra V , V1 and V2 are given by (27)-(29).

Using the multiplication rules of the algebra of quaternions we

get

Vq(f2, f1) =

= sgnf2sgnf1

(

U (oo)
ee + e1U

(oe)
eo + e2U

(eo)
oe + e3U

(ee)
oo

)

, (41)

V1q(f2, f1) =

= sgnf1

(

− U (eo)
ee − e1U

(ee)
eo + e2U

(oo)
oe + e3U

(oe)
oo

)

, (42)

V2q(f2, f1) =

= sgnf2

(

− U (oe)
ee + e1U

(oo)
eo − e2U

(eo)
ee + e3U

(eo)
oo

)

. (43)

In the above definitions the subscripts express the even/odd

parity of the corresponding term and superscripts the even/odd

parity of the term of the Fourier transform (compare with (9)-

(12)). Such a double notation of indexes appeared to be very

useful in derivations performed in Appendixes B and C.

It can be easily shown that using the definition (34) of the

inverse QFT for spectra defined in (38)-(40) we get exactly

the same forms of total and partial Hilbert transforms as in

(30)-(32). The full derivation will be given in Appendix C.

Concluding we can state that complex and quaternion an-

alytic signals are equivalent representations of the 2-D real

signal u(x2, x1) and only the mathematical apparatus used in

derivations is different.

Moreover, it is possible to derive the formulas similar to

(27)-(29) in the quaternion domain. They have the form

Vq(f2, f1) = (e1sgnf1)Uq(f2, f1)(e2sgnf2), (44)

V1q(f2, f1) = (−e1sgnf1)Uq(f2, f1), (45)

V2q(f2, f1) = Uq(f2, f1)(−e2sgnf2). (46)

Note that the order of multiplication in the above formulas

is strictly determined and cannot be changed due to the non-

commutativity of the algebra of quaternions.

V. PROPERTIES OF HILBERT QUATERNION SPECTRA

It has been already shown in (37) that the quaternion

analytic signal with the 1st-quadrant spectrum support is

Ψq(x2, x1) = u + e1v1 + e2v2 + e3v. Applying the linearity

of QFT for (37), we obtain

QFT {Ψq(x2, x1)} = QFT {u+ e1v1 + e2v2 + e3v} =

= QFT {u}+QFT {e1v1}+QFT {e2v2}+QFT {e3v}.
(47)

However, from (33) we know that (47) should be equal to

QFT {Ψq(x2, x1)} = (1 + sgnf1)(1 + sgnf2)Uq(f2, f1) =

= Uq(·)+sgnf1·Uq(·)+sgnf2·Uq(·)+sgnf1sgnf2·Uq(·) (48)

Moreover, from (44)-(46) we get

e1Vq(f2, f1)e2 = sgnf1sgnf2 · Uq(f2, f1), (49)

e1V1q(f2, f1) = sgnf1 · Uq(f2, f1), (50)

V2q(f2, f1)e2 = sgnf2 · Uq(f2, f1). (51)

Comparing (47) with (48) using relations (49)-(51) we get new

relations for Hilbert quaternion spectra as follows:

QFT {e1v1} = e1QFT {v1} = e1V1q, (52)

QFT {e2v2} = QFT {v2}e2 = V2qe2, (53)

QFT {e3v} = e1QFT {v}e2 = e1Vqe2. (54)

To our knowledge, the relations (52)-(54) presented above

seem to be an original result.

VI. SUMMARY

In this paper, the properties of 2-D Hilbert transforms origi-

nally defined by Hahn in [1] have been studied in complex and

quaternion domains. It has been proved, that both approaches

give exactly the same result. Some new formulas relating

complex and quaternion spectra have been developed and

verified.

APPENDIX A

ALGEBRA OF QUATERNIONS H

The quaternions form a non-commutative algebra of order

4 over R, denoted with H. Basing on the Cayley-Dickson

construction, a quaternion q is defined as an ordered pair

of complex numbers z0 and z1 : q = (z0, z1), where

z0 = r0 + r1e1 and z1 = r2 + r3e1. Here again, we use

e1 for the imaginary unit (usually denoted with i and j). We

can write

q = z0 + z1e2 = (r0 + r1e1) + (r2 + r3e1)e2. (55)

Applying the Hamilton’s multiplication rules of imaginary

units in H (Table I), we obtain the general form of a quater-

nion:

q = r0 + r1 · e1 + r2 · e2 + r3 · e3. (56)

The conjugate of q and its norm |q| respectively are

q∗ = r0 − r1 · e1 − r2 · e2 − r3 · e3. (57)
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TABLE I
MULTIPLICATION OF IMAGINARY UNITS IN Ç

× 1 e1 e2 e3
1 1 e1 e2 e3
e1 e1 -1 e3 -e2
e2 e2 -e3 -1 e1
e3 e3 e2 -e1 -1

|q| =
√

r20 + r21 + r22 + r23 . (58)

The quaternions (56) with r0 = 0 are referred as pure

(reduced) quaternions and those with |q| = 1 as unit (unitary)

quaternions.

Hypercomplex numbers have found numerous applications

in different fields, e.g., in color image processing [7]–[11]

and in digital signal processing [12]–[15] In color image

processing, reduced quaternions and reduced commutative

biquaternions [16] are used as representations of a RGB image.

Its spectrum is calculated using the Quaternion FT introduced

and used by Ell [5], [9] or its discrete version called Quater-

nion Discrete FT (QDFT) [7] which opens up a very wide

range of possible applications [6], [10], [11]. In [10] for ex-

ample, the problem of estimation of the motion characteristics

within a time-varying color image scene is investigated. It has

been shown that using hypercomplex (quaternion) approach

results in lower computational cost and better performance in

presence of different distortions. Another problem is the edge

detection in color images using filters based on convolution

with quaternion masks or the Discrete Quaternion Correlation

function [6], [11]. The hypercomplex representation of a color

image makes easy detecting objects with the same shape, size,

color and brightness as the reference pattern (or presenting

only two common features, like shape and color or shape and

brightness).

In digital signal processing quaternions and reduced bi-

quaternions are applied in filter design [13], [14]. Using the

hypercomplex approach, it is possible to reduce the order of

a real filter and to process vector-valued signals (functions

of a few independent parameters) as a whole conveying

information (e.g., directivity) which is lost in case of treating

each component separately.

APPENDIX B

HILBERT TRANSFORMS DERIVED USING A 2-D COMPLEX

SIGNAL WITH THE 1ST QUADRANT SPECTRUM SUPPORT

In this part, we derive the Hilbert transforms (total and

partial) starting with the decomposition of the spectrum of the

real signal u(x2, x1) into its even-even, even-odd, odd-even

and odd-odd parts (7). Substituting the Fourier spectrum (7)

into (22), we obtain

v(x2, x1) =

= −

∫∫

R2

sgn(f2)sgn(f1)

[Uee − Uoo − e1(Ueo + Uoe)]e
e1(α1+α2)df =

=

∫∫

R2

sgn(f2)sgn(f1)Uees2s1df+

+

∫∫

R2

sgn(f2)sgn(f1)Uooc2c1df+

−

∫∫

R2

sgn(f2)sgn(f1)Ueos2c1df+

−

∫∫

R2

sgn(f2)sgn(f1)Uoec2s1df (59)

where c1 = cos(2πf1), c2 = cos(2πf2), s1 = sin(2πf1),
s2 = sin(2πf2) and f = (f2, f1). After reordering the terms

we finally get

v(x2, x1) = v(oo)ee − v(oe)eo − v(eo)oe + v(ee)oo . (60)

To get the partial Hilbert transform v1 expressed as the sum

of terms of different parity, we substitute the spectrum given

by (8) into (22):

v1(x2, x1) =

= −e1

∫∫

R2

sgn(f1)[Uee−Uoo−e1(Ueo+Uoe)]e
e1(α1+α2)df =

=

∫∫

R2

sgn(f1)Ueec2s1df −

∫∫

R2

sgn(f1)Uoos2c1df+

−

∫∫

R2

sgn(f1)Ueoc2c1df +

∫∫

R2

sgn(f1)Uoes2s1df (61)

The partial Hilbert transform v1 is equal to

v1(x2, x1) = −v
(eo)
1ee

+ v
(ee)
1eo

− v
(oo)
1oe

+ v
(oe)
1oo

. (62)

Analogously, repeating the same procedure as above we get

the partial Hilbert transform v2. From (9) and (22) we obtain

v2(x2, x1) =

= −e1

∫∫

R2

sgn(f2)[Uee−Uoo−e1(Ueo+Uoe)]e
e1(α1+α2)df =

=

∫∫

R2

sgn(f2)Uees2c1df −

∫∫

R2

sgn(f2)Uooc2s1df+

−

∫∫

R2

sgn(f2)Ueoc2c1df −

∫∫

R2

sgn(f2)Uoes2s1df (63)

and finally

v2(x2, x1) = −v
(oe)
2ee

− v
(oo)
2eo

+ v
(ee)
2oe

+ v
(eo)
2oo

. (64)

APPENDIX C

HILBERT TRANSFORMS DERIVED USING A QUATERNION

SIGNAL WITH THE 1ST QUADRANT SPECTRUM SUPPORT

Let us derive the total and partial Hilbert transforms in

a different way as in Appendix B. We know that they are

successive imaginary terms of the quaternion analytic signal

given by (35). Inserting into (32) the quaternion spectrum Uq

given by (16) we get

Ψq(x2, x1) =

∫∫

R2

ee1α11(f2, f1)Uq(f2, f1)e
e2α2df =

=

∫∫

R2

ee1α11(f2, f1)(Uee−e1Ueo−e2Uoe+e3Uoo)e
e2α2df =

=

∫∫

R2

(c1 + e1s1)1(f2, f1)
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(Uee − e1Ueo − e2Uoe + e3Uoo)(c2 + e2s2)df (65)

where 1(f2, f1) = (1 + sgnf1)(1 + sgnf2) and the notations

are the same as introduced in (59). The real part of (65) is

u(x2, x1) = Re{Ψq(x2, x1)} =

=

∫∫

R2

(Ueec2c1 + Ueoc2s1 + Uoes2c1 + Uoos2s1)df =

= uee(x2, x1)+ueo(x2, x1)+uoe(x2, x1)+uoo(x2, x1) (66)

and coincides with (1). Next, the partial Hilbert transform v1
is equal to

v1(x2, x1) =

=

∫∫

R2

sgnf1(Ueec2s1 −Ueoc2c1 +Uoes2s1 −Uoos2c1)df =

= −v
(eo)
1ee

+ v
(ee)
1eo

− v
(oo)
1oe

+ v
(oe)
1oo

. (67)

The partial Hilbert transform v2 is

v2(x2, x1) =

=

∫∫

R2

sgnf2(Uees2c1 +Ueos2s1 −Uoec2c1 −Uooc2s1)df =

= −v
(oe)
2ee

− v
(oo)
2eo

+ v
(ee)
2oe

+ v
(eo)
2oo

. (68)

and finally the total Hilbert transform v is given by

v(x2, x1) =

=

∫∫

R2

sgnf2sgnf1·

·(Uees2s1 − Ueos2c1 − Uoec2s1 + Uooc2c1)df =

= v(oo)ee − v(oe)eo − v(eo)oe + v
(ee)
2oo

. (69)

REFERENCES

[1] S. L. Hahn, “Multidimensional Complex Signals with Single-orthant
Spectra,” Proceedings of the IEEE, vol. 80, no. 8, pp. 1287–1300, August
1992.

[2] ——, Hilbert Transforms in Signal Processing. Artech House Inc.,
1996.
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SIPCO 2007), Poznań, Poland, September 3-7 2007, pp. 1322–1326.
[16] S. J. Sangwine, T. A. Ell, and N. le Bihan, “Fundamental Repre-

sentations and Algebraic Properties of Biquaternions or Complexified
Quaternions,” Advances in Applied Clifford Algebras, pp. 1–30, January
2010.

[17] K. M. Snopek, “New Hypercomplex Analytic Signals and Fourier
Transforms in Cayley-Dickson Algebras,” Electronics and Telecommu-

nications Quarterly, vol. 55, no. 3, pp. 403–415, 2009.


