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Abstract—In the present paper we focus on online monitoring
system for predictive maintenance based on sensor automated
inputs. Our subject was a device from Maritsa East 2 power
plant – a mill fan. The main sensor information we have access
to is based on the vibration of the nearest to the mill rotor bearing
block. Our aim was to create a (nonlinear) model able to predict
on time possible changes in vibrations tendencies that can be
early signal for system work deterioration. For that purpose,
we compared two types of recurrent neural networks: historical
Elman architecture and a recently developed kind of RNN named
Echo stet networks (ESN). The preliminary investigations showed
better approximation and faster training abilities of ESN in
comparison to the Elman network. Direction of future work will
be increasing of predications time horizon and inclusion of our
predictor at lower level of a complex predictive maintenance
system.
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I. INTRODUCTION

MAIN source of damages and accidents in technological

processes are erosion, corrosion, vibration, and depo-

sitions. The particularly illustrative example in metallurgical

objects is wearing of ceramic insulation in contact with liquid

metal. The degree of degradation of the facility is essential

for determining future operational behavior. Therefore, the

construction of diagnostic models is one of most important

task. A major scientific problem is finding an approach for

integration of diagnostic with analytical and based on cur-

rent data models. Given the sharp worsening in the forecast

quality of models according on the horizon of performance,

finding a compromise between short-and long-term diagnostic

and forecasting will be a problem. Here the use of training

methods and evolutionary algorithms is inevitable. In the mod-

ern processes, control theory the predictive maintenance and

operational impacts should be considered as two interrelated

actions.

Fault detection is recognizing that a problem has occurred,

even if you don’t yet know the root cause. Faults may be

detected by a variety of quantitative or qualitative means. This
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includes many of the multivariable, model-based approaches.

It also includes simple, traditional techniques for single vari-

ables, such as alarms based on high, low, or deviation limits

for process variables or rates of change, Statistical Process

Control (SPC) measures, and summary alarms generated by

subsystems.

The fault does not have to be the result of a complete failure

of a piece of equipment, or even involve specific hardware. For

instance, a problem might be defined as non-optimal operation

or off-spec product. In a process plant, root causes of non-

optimal operation might be hardware failures, but problems

might also be caused by poor choice of operating targets, poor

feedstock quality, poor controller tuning, and partial loss of

catalyst activity, buildup of coke, low steam system pressure,

sensor calibration errors, or human error.

Other elements of Operations Management Automation

related to diagnosis include the associated system and user

interfaces, and workflow (procedural) support to for the overall

process. Workflow steps that might be manual or automated

include notifications, online instructions, escalation procedures

if problems are ignored, fault mitigation actions (what to do

while waiting for repairs), direct corrective actions, and steps

to return to normal once repairs are complete.

Automated fault detection and diagnosis depends heavily

on input from sensors or derived measures of performance.

In many applications, such as those in the process industries,

sensor failures are among the most common equipment fail-

ures. Therefore, a major focus in those industries has to be

on recognizing sensor problems as well as process problems.

Distinguishing between sensor problems and process problems

is a major issue. Our usage of the term “sensors” includes

process monitoring instrumentation for flow, level, pressure,

temperature, power, vibration and so on. In other fields such

as network and systems management, it can include other

measures such as error rates, CPU utilization, queue lengths,

dropped calls, and so on. In addition, diagnosis as a decision

support activity rather than a fully automated operation is

common in the management of large, complex operations such

as those found in the process industries and network and

systems management.

Here we focus mainly on online monitoring systems, based

on sensor or other automated inputs. In the presented paper,

we have chosen to analyze a device from Maritsa East 2 power

plant – a mill fan. The main sensor information we have access

to is based on the vibration of the nearest to the mill rotor

bearing block. Our aim was to create a (nonlinear) model able

to predict on time possible changes in vibrations tendencies

that can be early signal for system work deterioration.
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Artificial Neural Networks (ANN) is created initially to

mimic human brain [1] but they are also recognized as uni-

versal approximations for any kind of non-linear dependences.

In [2] it is proposed to use feed-forward ANN structure for

mapping of vibration amplitude given time steps in the future

accounting for its values for several time steps in the past.

Although such approach showed good approximation abilities

it needs preliminary investigation of the needed data time

steps in the past to be included in to the ANN input vector.

Inclusion of feedback connections in ANN architecture called

Recurrent Neural Network (RNN) allows accounting for past

input state influence to the network current output. However,

training of such complicated architecture is not that easy and

fast in comparison with the simple feedforward architectures.

A known by far Elman network architecture [3] consisting

of a fully recurrent layer and linear output layer is one of first

examples of RNN. Initially proposed algorithms for its training

is backpropagation or its modifications [1] accepting that

backward connections are constants. Other possible training

algorithms are Extended Kalman Filter method (EKF) or

backpropagation through time (BPTT) [1] that are much more

computationally demanding but allow backward connections

training and hence are much more accurate.

A recently proposed ESN structure [4]–[6] incorporates

a randomly generated dynamic reservoir and easy trainable

output neurons usually with linear transfer functions. This

architecture is very similar to the Elman architecture with

only difference that the recurrent layer is not fully connected

and its connections are randomly generated. However, the

training approach for ESN is different and faster because once

generated reservoir connections weights as well as the input

weights are not subject of training. The only trainable weights

are that of the output connection matrix. Since the readout

from the reservoir usually is linear dependence, the training

can be done off-line within a single step or by using Recursive

Least Squares algorithm (RLS) in on-line mode [4]. In search

of improving reservoir quality algorithm for initial adjustment

of reservoir connections matrix was proposed in [7]. It is

called intrinsic plasticity (IP) and is aimed at increasing

the entropy of the reservoir neurons outputs thus stabilizing

its dynamic behavior. Such combined IP-RLS training was

already successfully applied in [8], [9]

In our previous work, we [10] applied ESN as a model

for prediction of changes in vibrations tendencies of mill fan

system. Here our aim is to compare this newly developed kind

of RNN with historical Elman RNN architecture. The prelim-

inary investigations showed better approximation and faster

training abilities of ESN in comparison to the Elman network.

Direction of future work will be increasing of predications

time horizon and inclusion of our predictor at lower level of

a complex predictive maintenance system.

II. PROBLEM FORMULATION

Maritsa East 2 thermal power plant (TPP) has built up eight

blocks – 4×175 MW and 4×210 MW. In historic plan in

1962, a decision has been taken for building up Maritsa East

2 TPP, and since 1970, the electro energy of least price cost

for the country is produced in Maritsa East 2 TPP. In the

end of 1995 (19 Dec.) 8th energy block (215 MW) has been

connected in parallel to the energy system of the country by

which the second stage of Maritsa East 2 TPP enlargement

was completed. Achieved installed capacity is 1450 MW. This

turns Maritsa East 2 TPP into the biggest thermal power

plant in the Balkans. After following reconstructions and

modernizations installed capacity at the moment reaches 1556

MW as in the end of 2009 (Dec. 24) block 6 was cut off for the

purpose of modernization and increasing its capacity to 230.

The Maritsa East 2 TPP being the largest thermal power plant

on the Balkan Peninsula and the choice of the given power

plant is not occasional.

Honeywell’s Experion control system is installed on Units 1,

3 and 4 in Maritsa East 2 thermal power plant. Using standard

engineering tools computer models of the controlled units are

created and entered in real-time database. Each parameter is

collected and shown in control system’s database in real time.

It can be shown in different formats and appearance depending

of the user needs – operator, shift engineer, maintenance

personal, management etc.

Experion Process Knowledge System (PKS) is a cost-

effective open control and safety system that expands the

role of distributed control. It addresses critical manufacturing

objectives to facilitate sharing knowledge and managing work-

flow. Experion provides a safe, robust, scalable, plant-wide

system with unprecedented connectivity through all levels of

the plant as illustrated in the following high-level view of

the architecture. The Experion unified architecture combines

DCS functionality and a plant-wide infrastructure that unifies

business, process, and asset management to Facilitate knowl-

edge capture; Promote knowledge sharing; Optimize work pro-

cesses; Accelerate improvement and innovation. The Experion

platform is well suited for both small and large systems. It

provides the power and flexibility required to handle the full

spectrum of process control and safety applications.

Data gathering and collection of as much as possible data

is the fundamental of decision support. It is not practical to

measure all parameters in a typical power plant, so we can

judge about them by other parameters and overall parameters

trends. Data gathering for long period can give good indication

how process was developed during the time – for example we

can judge if overhaul improved or not equipment operation.

In other words, system provides additional information for

additional analysis. Depending on the significance and skills

needed, conclusion can be made by operator, shift supervisor

or other manager depending on duties and responsibilities.

Maybe most important fact is that during system refurbish-

ment project, big part of knowledge and good practice are

embedded in the system. In the past, operator needed to be

highly skilled, nowadays part of their knowledge and best

control practice are taken into consideration during design of

the control algorithms. Direction is to have fully automated

plant, although in most cases this is practically impossible. The

idea is to reduce the human factor and related to this factor

incidents. Besides all parameters, needed for the operators,

additional data and calculations are available to upper level
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management for decisions that can have economical and

financial impacts.

This is next level in control – information and process

calculations, different and specific production costs etc., which

are crucial for the manager. For example, let’s imagine that

unit is working at 150MW load and this is optimal mode of

operation, but there is a demand for 170MW – management

should make calculations if it is economically beneficial to

provide this additional 20MW, but to put unit in less optimal

operating point.

This is second level of information control system is pro-

viding – this information is more relevant not to the process

control, but decision making. Manager could decide to reduce

slightly efficiency of the unit, by putting it out of optimal

operational point, but to benefit more from the additional price

he is receiving for providing more power on demand. That’s

why it is so important that relevant information is available to

all managers at different levels.

In the presented paper, we have chosen to analyze a device

from Maritsa East 2 power plant – a mill fan. The mill-fans

are used to mill, dry and feed the coal to the burners of the

furnace chamber. They are together milling and transporting

devices. Mill-fans are most often used for power plants burning

brown and lignite coal. In general, these are large centrifugal

fans which suck flue gases with temperature around 800-1000

degC from the top of the furnace chamber. In the same pipe,

the coal is feed, thus diminishing the drying agent temperature

and drying the coal prior entering the fan. The coal is being

milled by the fast rotating rotor of the fan and turn into coal

dust. This dust is transferred to separator that returns the bigger

particles to the fan. The separator can be tuned for a desired

dust granulometric size. One of the most important parameters

to control is the discharge temperature of the dust-air mixture.

For the considered mill-fan, it should be between 145-195 ◦C.

Lower than 145 ◦C may cause clogging of the mill and higher

than 195 ◦C may cause the dust to be fired in the ducts prior

the burners. This temperature is also a measurement for the

load of the mill. The lower the temperature the higher the

load is – more coal is fed to the mill. The part, which suffers

the most and needs care, is the rotor of the mill fan. Because

of the abrasive effect of the coal, it wears out and should be

repaired by welding to add more metal to the worn out blades.

The boiler which milling system is studied is a Benson type

once-though sub-critical boiler. There are four mills per boiler.

Each mill fan system has four radial bearings – two in the

mill and two in the motor. The DCS installed on the site is

Honeywell Experion R301 Process. All the data used in the

present research are obtained from the historian system of the

Distributed Control System (DCS).

On the next Figure, the structure scheme of the boiler as

well as its main parameters is shown. These include: Steam

output, t/h 690; Steam pressure, MPa (kgf/cm2) – at boiler

outlet 15,4 (157) and at re-heater outlet 3,5 (35,7); Steam

temperature, ◦C – primary steam temperature 540 and reheat

steam temperature 540; Secondary steam flow, t/h 600; Design

fuel: Lignite; Design gross efficiency of the boiler, % 89,9;

Weight content of NOx in flue gas (at α = 1.4), mg/Nm3

315.

Fig. 1. Boiler Ep-690-15,4-540 LT.

Prognostic maintenance of a mill fan is considered in the

presented paper. It is based on the vibration of the nearest

to the mill rotor bearing block. The observation period is

16.12.2010 – 16.01.2011. On 31.12.2010, the rotor of the mill-

fan is changed. After the replacement, it has been working for

378 hours. The period chosen allows for vibrations analyzes

before and after the replacement. It is observed that after

the replacement the vibrations with new rotor have higher

amplitudes than with the worn out one. This is because of

the abrasive wear out of the rotor – the blades become thinner

and the rotor becomes lighter. The new rotor is heavier so the

vibrations are more intensive even though the rotor has been

carefully balanced.

In the present paper, we will describe briefly two considered

RNN architectures and their training algorithms.

Fig. 2. Elman network.
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A. Elman Network

The Elman network architecture is shown on Figure 2.

In order to make comparison with ESN later we adopt

some of terminology typical for that architecture. The fully

connected recurrent hidden layer is named “reservoir”. All of

reservoir or hidden neurons have connections from the input

in(k) at discrete time instant k and from reservoir output

R(k − 1) one time step backwards. The reservoir output is

nonlinear function f res of its inputs linear combination as

follows:

R(k) = f res

(

W inin(k) +W resR(k − 1)
)

(1)

W in and W res are nR × nin and nR×nR matrices, where

nout, nin and nR are the sizes of the corresponding vectors

out, in and R. Feedback connections are between every two

neurons in the hidden layer, i.e. all the elements of matrix

W res are non-zero. The network output is linear combination

of all hidden neurons outputs as follows:

out(k) = W outR(k) (2)

W out is a nout × (nin + nR) matrix.

Since training of feedback connections matrix W res is

complicated, one possibility is to fix them to be constants,

all with values equal to 1. Thus subject of training are the

rest of connections weights. BPTT-EKF algorithms [1] allow

training of feedback connections too but at considerably higher

computational cost and corresponding time needed.

In our investigation, we used EKF algorithm for training all

the Elman network connections weights. For that purpose, we

used the Matlab function developed by Yi Cao [11].

B. Echo State Network

ESNs are a kind of recurrent neural networks that arise from

so called “reservoir computing approaches” [6].

The basic ESN structure is shown in Figure 3 below.

Here the notions are the same as those for Elman network

architecture. The main difference is that the reservoir neurons

are randomly connected and some of the elements of W res

are zero. W in and W res are randomly generated and are not

trainable. Another difference is that direct connection from

input to output is also allowed. There are different approaches

for reservoir parameter production [6]. A recent approach

used in the present investigation is proposed in [7]. It is

Fig. 3. Echo state network structure.

a)

b)

Fig. 4. a) Elman network training and testing with ∆t = 1 minute, b) ESN
network training and testing with ∆t = 1 minute.

called intrinsic plasticity (IP). The algorithm suggests initial

adjustment of reservoir matrix, aimed at increasing the entropy

of the reservoir output. ESN training can be done in an off-line

or an on-line mode. For on-line training, the RLS algorithm

[6] was proposed. It is claimed that it converges fast and it is

less computationally expensive in comparison to BPTT-EKF

methods [12].

Here we used the free software from [13] with our addition

of IP pre-training algorithm from [7].

III. RESULTS AND DISCUSSION

Since in real industrial conditions there are many vibration

sources. That is why wavelet de-noising method was applied

[14]. In our case, it is done by soft heuristic threshold of the

wavelet coefficients using symlets for wavelet decomposition

at level 5. After filtration, the data are divided into two sets –

for training and testing of both RNN structures.

The aim was to train RNN able to predict vibrations

amplitude several time steps ahead using current measurement



RECURRENT NEURAL NETWORKS FOR PREDICTIVE MAINTENANCE OF MILL FAN SYSTEMS 405

TABLE I
TRAINING AND TESTING NRMSE AND TRAINING TIME IN CASE ∆T=1

MINUTE

NRMSE
NN Training time

structure
Training Testing

Elman 4.8215 3.2841 more than 10 hours
ESN 0.51571 0.72461 about 20 minutes

as input. For that purpose our RNNs has one input and one

output – for the vibration amplitude at current and future time

respectively. Here we’ve trained several Elman and ESNs to

predict vibration amplitude 30 minutes ahead. In both cases,

the reservoir contains only 10 neurons and initial spectral

radius for ESN was 0.9.

First, we tried to train RNN predictors using measurement

with one minute time step. The results for training and testing

data sets are shown on Figure 4 for the Elman and ESN struc-

tures respectively. The red line presents real measurements

data while the blue – RNN predictions in both cases.

Table I summarizes the Normalized Root-Mean-Square Er-

ror (NRMSE) for both cases and approximate training time

needed. The RLS method definitely showed that needs much

less time to train much more perfectly ESN. In contrast, the

Elman network is unable to be well trained and demonstrates

unstable behavior. This can be explained also with huge

amount of used data – more than 19000 items for training

and testing data sets.

Next, we tried to decrease the data set size using mea-

surement at every 10 minutes. Thus, the number of training

and testing data sets was 10 times decreased. Figure 5 below

presents the data fitting results for the training and testing

data sets for Elman and ESN structures again. The red line

presents real measurements data while the blue – RNN output

predictions in both cases.

Table II summarizes the NRMSE for both cases and approx-

imate training time needed. Again, the ESN is better trained.

In that case, Elman network was trained with considerably

good accuracy too due to lower amount of data.

IV. CONCLUSIONS

In the present investigations, we’ve tested two similar RNN

architectures – well known Elman network and newly devel-

oped Echo state network – as well as their training algorithms

TABLE II
TRAINING AND TESTING NRMSE AND TRAINING TIME IN CASE ∆T=10

MINUTE

NRMSE
NN Training time

structure
Training Testing

Elman 0.52098 0.69633 more than 5 hours
ESN 0.48746 0.68533 about 10 minutes

a)

b)

Fig. 5. a) Elman network training and testing with ∆t = 10 minute, b) ESN
network training and testing with ∆t = 10 minute.

(EKF and RLS). Both RNN structures were trained to predict

vibrations amplitude of a mill fan system. The obtained results

demonstrated the superiority of ESN structure with respect

to the data fitting accuracy and training time needed. The

obtained results are encouraging. Our next aim will be to

improve the ESN predictions quality for bigger time horizon

by increasing the reservoir size or using of global feedback

connection within ESN architecture.
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