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Fuzzy Model of 16PSK and 16QAM Modulation
Bohdan S. Butkiewicz

Abstract—In the paper, a concept of Additive Fuzzy Noise
(AFN) channel is introduced. The theoretical equations are
derived for Bit Error Rate (BER) and Symbol Error Rate
(SER) with some digital modulation scheme in the AFN chan-
nel. Following modulations are considered: Phase Shift Keying
(16PSK), Quadrature Amplitude Modulation (16QAM). The
fuzzy approach to these modulations is presented. The BER and
SER values are calculated using possibility theory. The results
obtained by fuzzy noise model are compared with conventional
approach, where probability models of the noise are used.

Keywords—Fuzzy modulation, BER, possibility, probability,
PSK, QAM, noise, signal.

I. INTRODUCTION

A
DISCRETE telecommunication channel consists of a

mapping device, transmit filter, propagation path, demod-

ulator, and decision device. Conventionally, is described by

signal theory or information theory using probability methods.

In this paper a definition of the Additive Fuzzy Noise (AFN)

channel is suggested. The fuzzy channel consists of similar

devices as conventional, thus its structure is similar to a

conventional channel. However, fuzzy description is applied.

It differs substantially from probability description. A digital

modulation involves choosing a particular signal form a finite

set of possible signals. During a transmission of the signal

by a channel additional effects occur as interference between

signals from other sources, distortions, noise, phase jitter, etc.

Many theoretical and practical solutions were proposed in

order to obtain correct recovering of transmitted messages.

The description of such solutions can be found in basic

books from telecommunication area, see for example [1]–

[3]. Some of the errors mentioned above can be diminish

by appropriate construction of the transmitter and receiver.

However, such effects as noise cannot be eliminated because

it weakly depends on equipment framework. The noise can be

diminished by choice of frequency band, but total elimination

is not possible. Influence of the noise is different and depends

on type of signal modulation. As a model of noise the Additive

White Gaussian Noise (AWGN) was assumed most frequently

[2] or sometimes Reighlay noise (fading).

For seven years, the author has been trying to establish

new theory of fuzzy signals. Basing concepts of signal theory

as fuzzy signal spectrum, based on proposed Fuzzy Fourier

Transform (FuzFT) [4], [5], fuzzy correlation and fuzzy con-

volution [6], fuzzy time invariant systems [7], fuzzy digital

filters [8], [9] were suggested.

In this paper the author describes an approach to concept

of fuzzy noise and possibilistic analysis of the error rates
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Fig. 1. Fuzzy channel.

for digital modulations used currently in the telecommuni-

cation equipment. In his previous paper, sent to publication

[10], the author described the following modulations: Binary

Phase Shift Keying (BPSK), Binary Frequency Shift Keying

(BFSK), Pulse Amplitude Modulation (4PAM), Quadrature

Phase Shift Keying (QPSK) and Quadrature Amplitude Mod-

ulation (QAM). The Bit Error Rate (BER) and Symbol Error

Rate (SER) values were calculated using possibility theory.

The results obtained by conventional approach, where proba-

bility model of the noise was used, were compared with the

results obtained by simulation of appropriate fuzzy noise.

Here, two models are proposed. First model is fuzzy. It was

assumed that the symbols sent at the input of the channel

are crisp functions of time. The noise and the output of the

channel are fuzzy functions of time. Analysis of the following

types of modulation are presented: 16PSK and 16QAM. The

possibility of symbol error rates for these types of modulations

are calculated and discussed. The results are compared with

that obtained by probabilistic methods for AWGN. Second

model is fuzzy-random. Some recent results for fuzzy-random

theory can be found in [11]. Here, the noise and interference

are supposed as random functions. The fuzzy model describes

their influence on the symbol error rate and decision taken by

the decision device.

II. FUZZY CHANNEL

The conventional approach to digital channel description

is based on probability model. The series of input bytes

b1, b2, ... enters at coding device, is converted into symbols

s(t) depending on type of modulation, and send to the channel.

The signal arriving at the input of digital receiver, i.e. at the

output of the channel, consists of a sum of transmitted signal,

multiplied by a constant value, and noise. Decision device

ought to recover correct series of input bytes (see Fig. 1). It

is supposed that symbols s(t) entering into the channel are

crisp functions of the time t. The fuzzy channel is linear and

satisfies the equation

η(t) = hs(t) + n(t) (1)

where η(t) is output of a channel, h is a scaling factor, s(t)
is a symbol and n(t) is a noise. The equation describing
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the conventional crisp channel is similar. Nevertheless, the

interpretation will be quite different. It is possible to consider

all terms in equation (1) as fuzzy functions or fuzzy numbers,

but such interpretation is very complicated and not necessary.

It is sufficient to consider n(t) as fuzzy function, which will

be called fuzzy noise, and output η(t) as fuzzy function.

The channel scaling factor h, the modulated signal x(t), and

symbol s(t) can be crisp. A decision taken at any discrete

moment kT , k=0,1,2,... at the end of transmission chain is

discrete. The noise has influence on this decision, but because

of discretization an assumption can be introduced that only

mean value of the noise during period T is important, not all

instant values n(t). Therefore, in following part of the paper

noise n is treated as fuzzy number with membership function

µn(v). Thus, the output of the channel be fuzzy complex

number and will be denoted by η. A channel satisfying such

assumptions with additive fuzzy noise will be called the

additive fuzzy discrete channel (AFDC).

III. PSK MODULATION

A. Probabailistic Approach

When baseband modulation is performed on an information

bit stream b1, b2, , the number of bits encoded per symbol is

constant log2M , with M representing the size of the symbol

set. In this case the complex baseband PSK modulation signal

is

sk(t) =
√

Esexp[−j2πk/M +Θ0] (2)

where Es is the energy per symbol, Θ0 is a constant phase

offset, and k = 0, ...,M − 1. The constellation diagram for

16-PSK (M=16) is shown in Fig. 2. Conventional approach

to Bit Error Rate (BER) applies probability theory. Typically,

the noise in (1) is assumed as Additive White Gaussian

Noise (AWGN) with constant power bilateral spectral density

N0/2. Assuming 2-dimensional Gaussian probability density

function p(x, y) for the noise, the expression for BER, when

M-PSK modulation is used, can be calculated. Unfortunately,

general expression is complicated and can be found in [1]. For

big values Es/N0 and M ≥ 8 simplified form can be obtained

ProbMPSK ≈ erfc[
√

Es/N0 sin(π/M)] (3)
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Fig. 2. Constellation for 16PSK modulation.

Fig. 3. Constellation for 16PSK and pdf for symbol s2.

With the purpose of easy calculation, the following procedure

is applied. The noise affects the real and imaginary part of

signal s(t). Let symbol sk be transmitting. Assuming the

conditional probability density function pn(x, y|sk) for the

noise (see Fig. 3)

pn(x, y|sk) =
1√
πN0

·

exp

(

− [x−Re(sk)]
2 + [y − Im(sk)]

2

N0

)

(4)

the BER value is numerically calculated using (3). The prob-

ability of error, where s2 is received as s1, is approximated

by

Probs2→s1 ≈ 1

2
erfc[

√

Es/N0 sin(π/M)] (5)

and where s2 is received as s0

Probs2→s0 ≈ 1

2
erfc[

√

Es/N0 sin(2π/M)] (6)

For 16-PSK it obtains Probs2→s1 ≈ 0.1915 and Probs2→s0 ≈
0.0065.

B. Possibilistic Approach

Consider now fuzzy description. It must be noted that

there is great difference between probability and possibility

concepts. A probability density function pdf(x) fulfils the

requirements:

pdf(x) ≥ 0 (7)

∫ ∞

−∞

pdf(x)dx = 1 (8)

max[pdf(x)]] 6= 1 (generally) (9)

whereas for membership function µ(x) the requirements are:

µ(x) ≥ 0 (10)

∫ ∞

−∞

µ(x)dx 6= 1 (generally) (11)

max[µ(x)]] = 1 (12)
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In fuzzy mathematics Zadeh [12] introduced a concept of

possibility. The possibility of an event “x is A”, where x is

crisp value and A is a fuzzy set with membership function

µA(x) is defined as numerically equal to µA(x)

Poss{x is A} = µA(x) (13)

Moreover,

Poss{∅} = 0 Poss{X} = 1 (14)

where ∅ is empty set and X is universum. For any disjoint

fuzzy sets A, B

Poss{A ∪B} = max[Poss{A}, Poss{B}] (15)

Poss{A ∩B} = min[Poss{A}, Poss{B}] (16)

Generally, maximum and minimum can be replaced by more

general operations, triangular norms (t − norm, s − norm).

Thus, the formula are quite different from probabilistic.

Let us try to compare fuzzy approach with probabilistic

one. There are three main methods for probability-possibility

transformation:

– conserving the same entropy

– transforming confidence interval into α-cuts of fuzzy set

– conserving similar shapes of pdf(x) and membership

function µ(x).

First method is applied to conserve similar amount of infor-

mation. Second, transforms any confidence interval at level

α into appropriate α-cut of fuzzy set. Third, is very simple,

conserves second moment in one point, but not exact.

A graphical comparison of second and third methods is

shown in Fig. 4 where normal distribution is transformed into

membership function.

Sudkamp [13] shows that do not exist any transformation

conserving properties of higher order, as moments. However,

it is possible to transform the pdf pn(x, y|sk) into membership

µn(x, y|sk) conserving the Gaussian shape, with the same

central value, but with max(µn(x, y|sk) = 1, and change the

variance of the noise var =
√

N0/2 in such a way to obtain

identical Probs2→s1 = Posss2→s1 . Let Es=10, N0=1, then

var = 0.707. After this transformation

µn(x, y|sk) = exp

(

− [x−Re(sk)]
2 + [y − Im(sk)]

2

2var1

)

(17)

where Re and Im are real and imaginary parts of symbol,

var1 = 2.303 ∗ var = 1.628. Fig. 3 shows µ(x, y|s2). The

possibility of erroneous transmission s2 → s1 occurs when

output value of the channel lies in the area limited by radiant

rays with angles π/8±π/16 (see Fig. 5). Let denote this area

by A. The possibility Posss
2→s1 is equal to maximal value of

the membership µ(x, y|s2) in A. The maximum is attained in

the point lying in half a way between s2 and s1. Thus, really

Posss2→s1 = exp
{

−
(

[Re
(s2 − s1

2

)

]2

+[Im
(s2 − s1

2

)

]2
)

/2var1

}

= 0.1915 (18)

Fig. 4. Two types of probability-possibility transformation, similar shape
type (up) and confidence type (down).

Using the same variance var1 = 1.628 as before it obtains for

the event s2 → s0

Posss2→s0 = exp
{

−
(

[Re
(s2 − s0

2

)

]2

+[Im
(s2 − s0

2

)

]2
)

/2var1

}

= 0.0044 (19)

The same results are right for any transition sk → sk±1 and

sk → sk±2.

The value obtained for Posss2→s1 is equal to Probs2→s1

on account of our assumption, but Posss2→s0 = 0.0044 is

quite different from Probs2→s0 = 0.0065. The discrepancy

arises by reason of different operations used for probability

(integration) and possibility (maximization) Therefore, using

Gaussian membership it is not possible to obtain similar

results. The membership function must have different shape.

Fig. 5. The method for calculation of BER.
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Fig. 6. The power-type membership family of fuzzy sets.

It may be considered as very inconvenient. However, Gaussian

pdf is only rough approximation with only one parameter

– variance, because the mean value must be s2. Moreover,

if some experimental results are known, the possibilistic

approach is more reasonable and membership function can

be easily built with accordance to data. Also, infinite limits in

Gaussian pdf are not reliable.

If second method, transformation of the confidence interval

into α-cuts, is used then first confidence level α(x) for

symmetric pdf is calculated for any interval [0, x]

α(x) =

∫ x

0

pdf(u)du (20)

Next, the membership is found as

µ(x) = [1− 2α(x)] (21)

Applying this method identical results for BER were obtained

as for probabilistic approach Posss2→s1 = Probs2→s1 =
0.1961 and Posss2→s0 = Probs2→s0 = 0.0074. Small

discrepancy between both methods (0.1915 and 0.1961) is

caused by different approximation methods, which were used

for simplifying calculations. Some discussion about approxi-

mation for BER calculation can be found in [14].

For the membership function many different shapes can

be applied: triangle, trapeze, bell function: The membership

function can be built directly, without any transformation or

approximation method, with accordance to measured data. It is

easier than probabilistic approach, where requirement (8) must

be satisfied. If analytic form of membership is necessary, the

good power type family of functions can be used. It is defined

by

µ(x) =







1/(1 + |2x|n) for |x| ≤ 1/2
1− 1/

(

1 + [2(1− |x|)]n
)

for 1/2 < x < 1
0 for |x| ≥ 1

where parameter n ≥ 1. Of course, the interval x ∈ [−1, 1]
can be enlarged. The family is shown in Fig. 6.

IV. QAM MODULATION

A. Probabailistic Approach

The QAM constellation is not unique. Circular or rectangu-

lar schema is used. Two examples are shown in Fig. 7. In the

Fig. 7. Rectangular and circular constellation for 16-QAM modulation.

paper rectangular 16-QAM constellation will be consider. In

this case the calculation is somewhat more complicated then

for PSK modulation. The symbols sk have complex values
√

Es/N0(±1± j),
√

Es/N0(±3± j3)

The probability or possibility of error depends on which

symbol is transmitted. For example s3 has smaller probability

of error than s6 because it is surrounded only by 3 symbols

not by 8 other symbols as s6. First consider probabilistic

approach. Let the symbol s6 be transmit. Fig. 8 shows such

case. Following the analysis presented in [14] the correct

transmission occurs when output signal fulfill conditions

0 < Re(η) < 2
√

Es/10) 0 < Im(η) < 2
√

Es/10) (22)

Let the conditional pdf for the real part be

Prob(x|s6) =
1√
πN0

exp
[

− (x−
√

Es/10)
2

N0

]

(23)

and similarly for imaginary part. Assuming statistical indepen-

dence of the real and imaginary parts, it follows that for the

probability of correct transmission it obtains

Prob(c|s6) =
[

1− erfc
(

√

Es

10N0

)]2

(24)

Thus, the probability of an error

Prob(e|s6) = 1−
[

1−erfc
(

√

Es

10N0

)]2

≈ 2erfc
(

√

Es

10N0

)

(25)
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Now let the symbol s3 be transmitting. Correct transmission

occurs when

Re(η) > 2
√

Es/10) Im(η) > 2
√

Es/10) (26)

Therefore, probability of the error

Prob(e|s3) = 1−
[

1−1

2
erfc

(

√

Es

10N0

)]2

≈ erfc
(

√

Es

10N0

)

(27)

Similar analysis for symbol s7 gives

Prob(e|s7) = 1−
[

1− 1

2
erfc

(

√

Es

10N0

)]

·
[

1− erfc
(

√

Es

10N0

)]

≈ 3

2
erfc

(

√

Es

10N0

)

(28)

Total probability of an error is weighted mean and equals

Prob16QAM ≈ 4

16
2erfc

(

√

Es

10N0

)

+
4

16
erfc

(

√

Es

10N0

)

+
8

16

3

2
erfc

(

√

Es

10N0

)

=
3

2
erfc

(

√

Es

10N0

)

(29)

Moreover, the erroneous transition s6 → s7 occurs with

probability

Prob(s6 → s7) =

∫ ∞

2

√
Es/10

Prob(x|s6)dx

·
∫

2

√
Es/10

0

Prob(y|s6)dy =

1

2
erfc

(

√

Es

10N0

)[

1− erfc
(

√

Es

10N0

)]

(30)

and transition s6 → s3 with probability

Prob(s6 → s3) =

∫ ∞

2

√
Es/10

Prob(x|s6)dx

·
∫ ∞

2

√
Es/10

Prob(y|s6)dy =
[1

2
erfc

(

√

Es

10N0

)]2

(31)

Let the energy of symbol be Es = 10 and power spectral

density of the noise N0 = 1, For correct transmission of s6

Prob(c|s6) = [1− erfc(1)]2 = 0.7101 (32)

Fig. 8. The pdf for 16-QAM modulation when symbol s6 was transmit.

Thus, error transmission occurs with probability Prob(e|s6) =
0.2899. The probability of the error when symbol s3 is

transmit is expressed as

Prob(e|s3) = 1− [1− erfc(1)/2]2 = 0.1511 (33)

and for total probability of an error for 16QAM transmission

is weighted mean (see [14]) and is equal

Prob16QAM ≈ (3/2)erfc(1) = 0.2359 (34)

For probability of transition s6 → s7 it obtains

Prob(s6 → s7) = erfc(1)[1− erfc(1)]/2 = 0.0663 (35)

For probability of transition s6 → s3 it obtains

Prob(s6 → s3) = [erfc(1)]2/4 = 0.0062 (36)

B. Possibilistic Approach

Consider now fuzzy description. Let membership function

be similar as in equation (17), but now variation will be differ-

ent, when similar shape method is applied for transformation

probability-possibility. The possibility of correct transmission

occurs when (22) is satisfied. Therefore, possibility of erro-

neous transmission s6 → s7

Posss6→s7 = exp
{

−
[

Re(s6 − s7)
]2

8var1

}

(37)

and similarly the possibility of the error s6 → s2 has value

Posss6→s2 = exp
{

−
[

Im(s6 − s2)
]2

8var1

}

(38)

The possibility of the error s6 → s3

Posss6→s3 = exp
{

−
(

[

Re(
s6 − s3

2
)
]2

+

[

Im(
s6 − s3

2
)
]2
)

/2var1

}

(39)

Applying transformation probability-possibility using similar

shape method, where arbitrary condition Prob(s6 → s7) =
Poss(s6 → s7) is supposed, it follows that variation of

membership function must be equal var1 = 0.3685 ∗ var.

In such situation a discrepancy of other results arises because

Posss6→s7 = Prob(s6 → s7) = 0.0663
Posss6→s3 = 0.0044 6= Prob(s6 → s3) = 0.0062
Thus, agreement is satisfied only in some points.

Now, let confidence method be applied. The membership

function is not normal and shape is similar as presented in

Fig. 4. Applying (20) and (21) it obtains Posss6 → s7 =
0.0663 and Posss6→s3 = 0.0062. Both results agreed with

probabilistic.

V. CONCLUSION

In the paper the differences between probabilistic and

possibilistic approach was shown. A discrepancy of the re-

sults is presented where similar shape method of probability-

possibility transformation is applied. It is caused by another

interpretation of probability density function and membership

function. Simple transformation of the probability density
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function into membership function, with conservation of sim-

ilar shape of function, for example normal distribution into

normal membership changing only the amplitude and variance,

can preserve the similar value of error in one point but it will

cause a discrepancy in other points. Thus, the membership

function must have another shape. For confidence interval

method, proposed by Dubois et al., the results of probabilistic

and possibilistic are agreed. If after gathering of measured data

the membership function will be built correctly as possibility

of errors then discrepancy can be avoided. Any approximation

by analytic special function as gaussian is not necessary. Thus,

possibilistic approach is easier.

In more complicated cases, when conjunction of inde-

pendent random events occurs, in probability theory total

probability is calculated as product of probabilities. In the case

of conjunction of fuzzy sets t-norms operations are applied,

commonly minimum. In such case the result will not agreed

with probabilistic. The product operation must be applied as

t-norm to avoid the discrepancy of results.

It must be noted that apart from presented approach there

exists another probability-possibility transformation proposed

by De Luca and Termini [15]. It is based on membership

function. In future work the author will consider this concept.
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