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Design of Pareto-Optimal Radar Receive Filters
Antonio De Maio, Marco Piezzo, Salvatore Iommelli, and Alfonso Farina

Abstract—This paper deals with the design of radar receive
filters jointly optimized with respect to sidelobe energy and
sidelobe peaks via Pareto-optimal theory. We prove that this
criterion is tantamount to jointly minimizing two quadratic
forms, so that the design can be analytically formulated in terms
of a multi-objective optimization problem. In order to solve it, we
resort to the scalarization technique, which reduces the vectorial
problem into a scalar one using a Pareto weight defining the
relative importance of the two objective functions. At the analysis
stage, we assess the performance of the receive filters in corre-
spondence of different values of the Pareto weight highlighting
the performance compromises between the Integrated Sidelobe
Level (ISL) and the Peak Sidelobe Level (PSL).

Keywords—Radar receive filter design, mismatched filter
design, multi-objective optimization problem, Pareto-optimal
points.

I. INTRODUCTION

THE design of optimized low sidelobe receive filters

for pulse compression radar systems is a hot research

topic among the radar signal processing community since

1960’s [1], [2]. It is of fundamental interest for many radar

applications including ground-based surveillance, Air Traffic

Control (ATC), anti-wind shear, and radar metereology.

Some early studies can be dated back to 1967-1968 [3], [4],

with reference to the IEEE journals, while to 1970 [5], [6],

in the context of Russian literature. In [7], a literary survey

and a selected reference list on this interesting problem is

provided together with some new contributions concerning

issues related to the filter length and the choice of the design

criterion. According to [7], the receiving filters proposed over

the years can be classified into two main categories. The

former, data independent class, does not require any prior

knowledge about the surrounding environment, whereas the

latter, data dependent class, depends on the assumed (possibly

estimated) parameters of the environment. With reference to

the former class, we quote [6], [8], and [9] where the minimum

Integrated Sidelobe Level (ISL) filter [6] and the minimum

Peak Sidelobe Level (PSL) filter [8], [9] are respectively

designed. While the minimum ISL system shares a closed form

solution, the computation of the minimum PSL filter requires

the solution of a Linear Programming (LP) problem [8], [9],
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with reference to real optimization variables and transmitted

code sequence, or the solution of a convex optimization Sec-

ond Order Cone Programming (SOCP) problem [7] in the case

of complex variables. Indeed, SOCP [10] problems represent

a family of convex optimization programs of great interest for

many signal processing applications such as beamforming [11]

and target localization [12].

In this paper, we still focus on the problem of radar receive

filter optimization, assuming the same signal model as in [7].

We propose a new design algorithm, based on the following

criterion: joint optimization of the sidelobe energy and the

peak sidelobe level. This task is tantamount to jointly mini-

mizing quadratic forms, so that the resulting design problem

can be formulated in terms of a multi-objective optimization

problem. In order to solve it, we resort to the scalarization

technique, where the original vectorial problem is reduced to

a scalar one through the use of the Pareto-optimal theory. Thus,

the proposed filters are chosen as Pareto-optimal points1 of the

previously mentioned multi-objective optimization problem.

The performance of the algorithm is evaluated in terms of

filter response, ISL, and PSL highlighting the role played by

the Pareto weight in the design procedure. Particular emphasis

is given to the trade-off existing between the aforementioned

metrics. Indeed, it is possible to show that a low peak sidelobe

level can be swaped for a reduction of the total sidelobe energy.

The trade-off is ruled by the Pareto weight, which indeed

represents the parameter defining the relative importance of

the two objectives in the optimization problem, namely the

cost required for improving a given objective (namely, the ISL)

making worse the other (namely, the PSL).

The paper is organized as follows. In Section II, we present

both the signal and the receiver models; then we formulate the

design problem providing the algorithm for the Pareto-optimal

filter construction. In Section III, we assess the performance of

the filter design scheme, also in comparison with the minimum

ISL and the minimum PSL filters. Finally, conclusions are

given in Section IV.

A. Notation

We adopt the notation of using boldface for vectors a and

matrices A. The i-th element of a and the (l,m)-th entry of A

are respectively denoted by a(i) and A(l,m). The transpose

operator and the conjugate transpose operator are denoted by

the symbols (·)T and (·)H respectively. The letter j represents

the imaginary unit (i.e. j =
√
−1). C is the set of real and

complex numbers. For any complex number x, we use ℜ(x)
and ℑ(x) to denote respectively the real and the imaginary part

1A Pareto-optimal solution of a multi-objective optimization problem is
defined as any solution that can’t be improved with respect to a component
without worsening the others [13].
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of x, |x| and arg(x) represent the modulus and the argument

of x. v⋆(·) stands for the optimal value of the problem (·). The

Euclidean norm of the vector x is denoted by ‖x‖. Finally,

0 denotes a zero vector or matrix as long as the size of it is

clear from the context.

II. PROBLEM FORMULATION AND MISMATCHED FILTER

DESIGN

Assume that the transmitted signal is a coded pulse; denote

by M the number of subpulses and by [s(1), . . . , s(M)]T

the radar code. The waveform at the receiver end is down-

converted to baseband, undergoes a subpulse matched fil-

tering operation, and then is sampled. The vector r =
[r(1), . . . , r(P )]T (P = 2L + M , with L being a design

parameter) of the samples from the range cell under test can

be written as [7], [14]2

r = α0s+

N−1
∑

n=−N+1,n6=0

αnJns+ n , (1)

where N = P −L(= L+M), s = [0, s(1), . . . , s(M),0]T ∈
CP (0 is the zero row vector of dimension L), αn’s are

complex scalars accounting for the Radar Cross Sections

(RCS’s) of the range cells illuminated by the radar and for

the channel propagation effects (in particular α0 refers to the

RCS of the cell under test), n is the vector (assumed white)

containing the filtered noise samples, and ∀n ∈ {1, . . . , N−1}

Jn(l,m) =

{

1 if m− l = n

0 if m− l 6= n
(l,m) ∈ {1, . . . , P}2

denotes the shift matrix. Finally J−n = J
T
n .

In order to estimate α0, as in [7], we focus on estimators

whose analytic form is

α̂0 =
xHr

xHs
, (2)

where x is a suitable P -dimensional complex vector (receive

filter) which can be designed according to several criteria. In

particular, if x = s, it is the classic matched filter to the signal

s. Otherwise, it is usually referred to, in open literature, as

mismatched filter or instrumental variable filter [7], [15].

Relevant performance metrics to optimize in the design

of a receive filter are related to the energies in the side-

lobes of the filter, i.e.
|xHJns|

2

|xHs|2 , n = ±1, . . . ,±(N − 1).
Specifically, if one wants to optimize the total energy un-

derlying the range sidelobes, it is possible to minimize the

ISL ,
∑N−1

n=−N+1,n6=0
|xHJns|

2

|xHs|2 [6], [14], so as to obtain the

minimum ISL filter as an optimal solution to the optimization

problem

min
x∈CP

N−1
∑

n=−N+1,n6=0

|xHJns|2
|xHs|2 . (3)

Conversely, if the main concern is to optimize the level of

sidelobe peaks, the metric to be considered is the PSL ,

2See these references for more details on the system model.

maxn=±1,...,±(N−1)
|xHJns|

2

|xHs|2 . Hence, the minimum PSL fil-

ter coincides with an optimal solution to the optimization

problem

min
x∈CP

max
n=±1,...,±(N−1)

|xHJns|2
|xHs|2 . (4)

Both ISL and PSL approaches are included in the more general

problem of minimizing the Lp-norm of the vector containing

the energies of the sidelobes. This mismatched filter design

criterion is proposed in [16], where an iterative algorithm

attempting to obtain an optimal solution to the problem is

introduced. However, the iterative technique of [16] has no

known convergence properties even if simulation results show

its effectiveness in some analyzed scenarios.

Indeed, providing a filter jointly optimized with respect

to the two aforementioned metrics represents an attractive

task. Such a need is in part justified by the growing demand

for more and more involving signal processing procedures,

with particular emphasis to those capable of adapting their

characteristics to different clutter features.

The idea pursued in this paper is to formulate the problem

in terms of the following multi-objective optimization problem

[13, pp. 174-187]:

min
x∈CP









N−1
∑

n=−N+1
n6=0

|xHJns|2
|xHs|2 , max

n=±1,±2
...,±(N−1)

|xHJns|2
|xHs|2









(5)

where the objective is now a vector-valued function which

accounts for both ISL and PSL. The main goal is to design

an algorithm capable of combining a low energy profile with

acceptable range sidelobe peaks. We resort to the scalarization

technique in order to find filters which are Pareto-optimal

solutions for (5) (more details about this topic can be found

in [13], [17]). The resulting scalarized problem is proved

equivalent to a convex SOCP problem which can be easily

solved through interior point methods with a polynomial-time

computational complexity.

A. Pareto-Optimal Receive Filter Design

This section is devoted to the design of Pareto-optimal

mismatched filters; namely, we focus on filters which are

Pareto-optimal solutions of problem (5). To this end, let us

denote by an = Jns, n = ±1, . . . ,±(N − 1), a0 = s, and

A = [a−N+1, . . . ,a−1,a1, . . . ,aN−1]
H ∈ C

(2N−2)×P .

As a consequence, |xHJns|2 = |aH
n x|2,

∑N−1
n=−N+1,n6=0 |xHJns|2 = xH(AHA)x and

|xHs|2 = |aH
0 x|2.

In the following, we exploit the scalarization technique [13,

pp. 174-187] to determine the Pareto-optimal points of the

vector optimization problem (5). Precisely, let us choose any
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λ≻R20
3, consider the scalar optimization problem

min
x∈CP









λ1









N−1
∑

n=−N+1
n6=0

|aH
n x|2

|aH
0 x|2









+ λ2



 max
n=±1,±2
...,±(N−1)

|aH
n x|2

|aH
0 x|2













,

(6)

and let x be an optimal point. Then, according to the scalar-

ization technique, x is a Pareto-optimal point for problem (5).

The parameter λ represents the Pareto weight vector; namely,

the vector containing the coefficients ruling the relative impor-

tance of the scalar components. The choice of the parameter λ

plays a primary role in the determination of the Pareto points;

indeed, it quantifies our desire to advantage a metric with

respect to the other. We explicitly notice that, setting in (6)

λ1 6= 0 and λ2 = 0, we obtain the minimum ISL filter, while,

if λ1 = 0 and λ2 6= 0, we come up with the minimum PSL

filter. Other values of λ≻R2 0 lead to different compromises

between the ISL and the PSL.

In order to find Pareto-optimal solutions to (6), we recast

problem (6) into the following problem

minx∈CP λ1

[

xH(AHA)x
]

+

+λ2

[

max
n=±1,...,±(N−1)

x
H(ana

H
n )x

]

s.t. xH(a0a
H
0 )x = 1

, (7)

Additionally, we observe that multiplying x for a scalar

complex exponential does not affect both the constraint and

the objective function; therefore, problem (7) is equivalent to

minx∈CP λ1

[

xH(AHA)x
]

+

+λ2

[

max
n=±1,...,±(N−1)

x
H(ana

H
n )x

]

s.t. ℜ(aH
0 x) = 1.

(8)

Problem (8) can be reformulated as a convex optimization

problem which belongs to the class of the SOCP problems

[10]. Specifically, for λ2 6= 0 (if λ2 = 0, we obtain the

minimum PSL filter [8], [9]), problem (8) can be written as

min
x∈CP

max
n=±1,...,±(N−1)

xH
(

γAHA+ ana
H
n

)

x

s.t. ℜ(aH
0 x) = 1,

(9)

where γ , λ1

λ2

, or equivalently as

min
x,t

t

s.t. ‖Anx‖2 ≤ t, n = ±1, . . . ,±(N − 1) ,
ℜ(aH

0 x) = 1,
x ∈ CP , t ∈ R ,

(10)

where An ,

[√
γA

aH
n

]

.

The parameter γ can be interpreted as the weight given

to the second objective (namely, the total energy under the

sidelobes) with respect to the first one (namely, the peak level

of the sidelobes); this clearly implies that an optimal solution

to problem (8) is a function of the Pareto weight.

3We say that λ , (λ1, λ2)≻R20 if λ1 > 0 and λ2 > 0.

Fig. 1. Filter Output modulus versus the tap number. Minimum ISL filter
(plus-dashed green curve); minimum PSL filter (circle-solid black curve);
matched filter (cross-dashed blue curve); Pareto-optimal mismatched filter (9)
with γ ∈ {0.01, 0.02, 0.05, 0.07, 0.1} (solid red curves).

III. PERFORMANCE ANALYSIS

In this section, we assess the performance of the receive

filter introduced in the previous section in terms of output

modulus when the input is the transmitted sequence (zero-

Doppler cut of the cross-ambiguity function), ISL, and PSL.

Additionally, we provide the Pareto-optimal curve, i.e.






ISL⋆
, x

⋆H(γ)(AH
A)x⋆(γ),

PSL⋆
, max

n=0,±1,...,±(N−1)
x
⋆H(γ)(ana

H
n )x⋆(γ),

(where ISL⋆ and PSL⋆ represent, respectively, the objective

values of (3) and (4) in correspondence of an optimal solution

x⋆(γ) to (9)); namely, the set of Pareto-optimal values, ob-

tained through scalarization and varying the relative weight γ,

for the considered optimization problem. To this end, we resort

to a four-phase, length M = 34, code with a quite low peak to

sidelobe level equal to −19.49 dB, designed according to the

method described in Appendix-A of [14]. Moreover, we use

SeDuMi software [18] in our simulations to solve the SOCP

problem.

In Figure 1, we show the output modulus of the receive filter

in Section II-A for P = 74 and for some values of the Pareto

weight γ. In the same figure, we also plot the outputs of the

minimum ISL filter, the minimum PSL filter, and the matched

filter. From the plots, we can notice that the parameter γ rules

the tradeoff between ISL and PSL of the filter output. Indeed,

increasing γ we obtain filter responses which are closer and

closer to the minimum ISL filter output. This is of course

expected, as the greater γ, the higher the importance, in the

optimization procedure, of the ISL feature with respect to the

PSL one. This aspect is emphasized in Figure 2, where the

related Pareto-optimal curve is plotted, as γ ranges in the

interval [0, 0.1]. The curve is generally referred to as optimal

trade-off curve, because it highlights the connection between

the two objectives, ISL⋆ and PSL⋆, highlighting the role of

the weight in the determination of their Pareto-optimal values

and the cost paid for increasing one component with respect

to the other. The shaded region indicates the set of all the

achievable values (ISL, PSL); for example, intercepting the

curve with the vertical line ISL= η (thus considering a certain

fixed value for the ISL), we can observe how big PSL has to
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TABLE I
ISL AND PSL IN dB FOR THE PARETO-OPTIMAL MISMATCHED FILTER

(9), P = 74 AND γ ∈ {0.01, 0.02, 0.05, 0.07, 0.1}

γ ISL PSL

0.01 −10.017 −29.192
0.02 −10.215 −28.970
0.05 −10.460 −28.440
0.07 −10.582 −28.193
0.1 −10.593 −27.890

Matched Filter −4.675 −19.49
Minimum ISL Filter −10.885 −23.064
Minimum PSL Filter −9.610 −29.330

be in order to achieve ISL= η. The same interpretation arises

intercepting the curve with an horizontal line PSL= β (thus

considering a certain fixed value for the PSL), which makes

evident the minimum achievable value ISL in order to ensure

PSL= β. The slope of the optimal trade-off curve at a Pareto-

optimal value shows the local optimal trade-off between the

two objectives; steep slopes lead to large variations of ISL⋆

in correspondence of small changes in PSL⋆ (this is actually

what happens in the lower right region of the curves in Figure

2).

In Table I, we explicitly report the tradeoff between ISL

and PSL; as already pointed out, increasing γ is tantamount

of getting lower and lower PSL values, at the price of higher

and higher ISL levels.

In Figures 3a-3b, we analyze the behavior of the ISL and

PSL (still for the filter designed according to the criterion of

Section II-A) versus the parameter L, which rules the length

of the filter. For comparison, in the same figures, we also

report the behavior of the minimum ISL filter, the minimum

PSL filter, and the matched filter. The plots confirm that the

longer the filter, the lower the corresponding ISL and PSL

values. Indeed, this result is expected, since increasing L is

tantamount to providing more degrees of freedom to the filter

optimization process.

Finally, in Figures 4a–4b, we analyze the Doppler tolerance

of the filters shown in Figure 1. Specifically, we assess the

degradation of the actual ISL and PSL due to the presence of

a Doppler shift in the useful signal. The curves in the figures,

representing either ISL or PSL versus the normalized Doppler

frequency νd, ranging in the interval [−∆ν ,∆ν ], highlight that

Fig. 2. Pareto-optimal curve for γ ∈ [0, 0.1], with a four-phase code of
length M = 34. The set of achievable values above the curve is shaded in
gray.

a)

b)

Fig. 3. a) ISL versus L for the Filters in Figure 1, b) PSL versus L for the
Filters in Figure 1.
L = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]. Matched-Filter (blu x-dashed
curve). Minimum ISL filter (green circle-dashed curve). Pareto-optimal mis-
matched filters (red-solid curves).

the higher the target Doppler (i.e. the discrepancy from the

nominal condition), the worse the ISL and PSL associated

with the filter (for all the considered values of the parameter

γ). Nevertheless, for the simulated shift values, the new filters

still guarantee a performance level which is superior than that

ensured by the matched filter, both in terms of ISL and PSL.

IV. CONCLUSIONS

In this paper, we have considered the design of radar

receive filters according to the following criterion: joint op-

timization of the ISL and PSL performance metrics. The

problem has been formulated in terms of a multi-objective

optimization problem. In order to solve it, we have resorted

to the scalarization technique, thus focusing on the solutions

which are Pareto-optimal for the aforementioned problem.

At the analysis stage, we have assessed the performance of

the considered receive systems providing filter responses and

highlighting the tradeoff between ISL and PSL. Moreover, we

have studied the Pareto-optimal curve, showing the effects

of the Pareto weight on the performance trade-off. Finally,

we have analyzed the Doppler tolerance associated with the

considered receive systems.

Possible future developments might be focused on the

comparison between the proposed design criterion and that

based on the Lp norm minimization of the filter sidelobe

energies. Additionally, it might be of interest the study of

quantization effects on the filter coefficients as well as of

the possible imbalance between the I and Q channels of the

processing chain.
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a)

b)

Fig. 4. a) ISL versus νd for the Filters in Figure 1, b) PSL versus νd for
the Filters in Figure 1.
∆ν = 0.005. Matched Filter (blue-solid curve). Minimum ISL Filter (green-
solid curve). Pareto-optimal Mismatched Filters (red-solid curves).
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