
Management and Production Engineering Review

Volume 7 • Number 1 • March 2016 • pp. 21–32
DOI: 10.1515/mper-2016-0003

OFF-LINE AND DYNAMIC PRODUCTION SCHEDULING

– A COMPARATIVE CASE STUDY

Andrzej Bożek, Marian Wysocki

Rzeszów University of Technology, Department of Computer and Control Engineering, Poland

Corresponding author:

Andrzej Bożek

Rzeszów University of Technology

Department of Computer and Control Engineering

W. Pola 2, 35-959 Rzeszów, Poland

phone: (+48) 17 865-15-92

e-mail: abozek@kia.prz.edu.pl

Received: 2 January 2016 Abstract

Accepted: 16 February 2016 A comprehensive case study of manufacturing scheduling solutions development is given. It
includes highly generalized scheduling problem as well as a few scheduling modes, meth-
ods and problem models. The considered problem combines flexible job shop structure, lot
streaming with variable sublots, transport times, setup times, and machine calendars. Tabu
search metaheuristic and constraint programming methods have been used for the off-line
scheduling. Two dynamic scheduling methods have also been implemented, i.e., dispatching
rules for the completely reactive scheduling and a multi-agent system for the predictive-
reactive scheduling. In these implementations three distinct models of the problem have
been used, based on: graph representation, optimal constraint satisfaction, and Petri net
formalism. Each of these solutions has been verified in computational experiments. The re-
sults are compared and some findings about advantages, disadvantages, and suggestions on
using the solutions are formulated.

Keywords

flexible job shop, lot streaming, off-line scheduling, dynamic scheduling, tabu search, con-
straint programming, dispatching rules, Petri nets, multi-agent systems.

Introduction

Development of manufacturing planning and
scheduling algorithms and systems is often a chal-
lenging task. For instance, the scheduling problems
typically belong to the NP-hard class of computa-
tional complexity. Attempting to extract and solve
specific problems, majority of works ignore a com-
prehensive approach. As a result, these works are of
minor practical importance, because the partial so-
lutions have to be combined into a single one which
becomes a new challenge itself and further research
is needed before the implementation.

The main purpose of this work is to show that
it is possible, using modern methods of computer
science, to develop versatile solutions dedicated for
manufacturing scheduling and control. Firstly, the

generalized scheduling problem, potentially adapt-
able for many real-world manufacturing systems, is
formulated. Secondly, solutions for a few important
scheduling modes are developed and compared.
The considered scheduling problem is an exten-

sion of the well-known flexible job shop (FJS) [1].
The following features are additionally taken into ac-
count:
• Lot streaming, i.e., splitting lots into smaller parts
(sublots) which can be processed and transported
separately. The most general case of lot streaming
is used, namely the one with variable sublots. In
such a case, the sublot size can be different in con-
secutive operations of a job, thus the sublots have
to be repacked between the operations. Because
of the lot streaming and possibility of sublots in-
termingling, three variants of schedules are distin-
guished.

21

Management and Production Engineering Review

• Availability of machines is limited and defined by
individual calendars.

• Sequence-dependent setup times are considered
between the sublots belonging to different oper-
ations.

• Transport times depending on the pair of source
and target machines are also taken into account.

The considered problem has been named as flex-
ible job shop with lot streaming and repacking (LSR-
FJS), because the lot streaming with variable sublots
is the most characteristic extension used in its de-
finition. The problem formulation is modeled af-
ter manufacturing organization in a fastener fac-
tory.

Two off-line scheduling algorithms based on dif-
ferent models and methods have been implement-
ed, as well as two on-line scheduling algorithms that
represent completely reactive and reactive-predictive
modes. Each of the algorithms has been tested using
the same benchmark instances which makes it pos-
sible to compare them in the aspect of the objective
value. However, not only the objective value char-
acterizes scheduling modes, hence other features of
them have also been discussed. The work points the
advantages and disadvantages of selected scheduling
modes and methods on the basis of the concrete LSR-
FJS problem. The results may be useful for choice of
appropriate solutions for other manufacturing sys-
tems and may provide the suggestion about a favor-
able model and method.

Related work

Extended formulations of the FJS problem are
considered by many authors. In some works, the fea-
tures incorporated into the LSR-FJS definition are
taken into account: lot streaming [2–5], limited ma-
chines availability [6–11], setup times [3, 5, 12–17],
and transport times [3, 13, 17]. However, these ex-
tensions are most often considered separately. For
example, only two of the mentioned works [3, 5] con-
sider lot streaming and setup times simultaneously,
whereas all the works considering limited machine
availability do not involve any other extensions.

The work [18] is a detailed study of the lot
streaming method, however it relates to the flow shop
problem. There are three types of sublots defined:
equal (all of the same size), consistent (the size of
a sublot does not change in consecutive operations),
and variable (the sublots which are not consistent –
the most general type). Additionally, the lot stream-
ing may be without intermingling, if all sublots of
a single lot have to be processed one by one, or with
intermingling in other case. Existing works consider

the FJS extended by lot streaming with equal sublots
[2, 4, 5] and sparsely with consistent ones [3].

The novelty of the LSR-FJS problem definition is
that it includes all the considered extensions togeth-
er and that it takes into account the lot streaming
with variable sublots.

Four modes of scheduling are usually distin-
guished [19, 20]: off-line (also called as predic-
tive), completely reactive, predictive-reactive, and ro-
bust. The completely reactive and predictive-reactive
modes are often jointly referred to as dynam-
ic scheduling. Algorithms supporting any of these
modes are developed for the (flexible) job shop prob-
lem [6, 21, 22], however the off-line scheduling is the
most popular.

Predictive scheduling algorithms dedicated for
NP-hard problems are typically based on meta-
heuristics. In the case of the FJS, the tabu search
(e.g. [12, 13]) and genetic algorithms (e.g. [3, 4, 6,
8, 14]) are probably the most popular methods. The
mathematical programming in the form of themixed-
integer linear programming (MILP) [14, 15] is also
often used. Recently, some constraint programming
solvers [23, 24] have attained excellent performance
in the FJS optimization.

Dispatching rules [19, 20] are the primary method
of completely reactive scheduling. Dynamic schedul-
ing solutions, especially the predictive-reactive ones,
are not infrequently implemented as multi-agent sys-
tems (e.g. [21, 22]).

Two software tools have been used in this work
for developing on-line scheduling solutions. CPN
Tools [25] is the software supporting hierarchical
timed colored Petri nets (HTCPN) formalism [26],
useful for modeling and analysis of discrete time sys-
tems, successfully applied in many projects relat-
ed to manufacturing modeling and scheduling (e.g.
[27, 28]). JADE (Java Agent DEvelopment Frame-
work) [29] is a comprehensive multi-agent platform.
It has been used in many projects involving produc-
tion scheduling, planning and control (e.g. [30, 31]).

In the works related to the extended FJS prob-
lem, single-objective optimization is typically consid-
ered. The makespan is the most often selected objec-
tive, e.g., in many of the works mentioned above [3,
6–8, 11–13, 17, 22, 24, 27, 31]. Criteria based on tar-
diness (average [2], total [15], or total weighted [14,
21]) are used as well. However, the solutions involv-
ing multi-objective optimization are also developed.
The composition of the makespan, total workload,
and workload of the critical machine is probably the
most popular objective in this case [5, 9, 10]. Some-
times, a greater number of criteria are combined
[5]. The Pareto front [5, 9] or linear combination [9,

22 Volume 7 • Number 1 • March 2016

Management and Production Engineering Review

10] of individual criteria are the methods commonly
used in the multi-objective scheduling. The multi-
objective approach has a large practical importance.
Nevertheless, it is usually omitted in the works in-
volving extended FJS, especially when a new prob-
lem formulation is considered first time, because of
the formulation complexity. It is also the reason why
the makespan has been chosen in this work. Howev-
er, scheduling of the LSR-FJS problem using multi-
objective approach is planned as a future work.

LSR-FJS problem

The LSR-FJS problem (Fig. 1) is defined as fol-
lows:

• A set of n jobs J = {Jk : k ∈ {1, . . . , n}} is given.
Each job Jk is defined by the sequence of oper-
ations Ok = {Ok,i : i ∈ {1, . . . , |Ok|}}. The size
ek ∈ N of each job Jk is also given and represents
the number of identical elements that have to be
processed in each operation assigned to the job.

• A nominal sublot size dk,i ∈ N, dk,i ≤ ek is defined
for each operation Ok,i. The operation is split into
gk,i sublots, where gk,i = ⌈ek/dk,i⌉, and each sub-
plot has dk,i elements, except a single one, which
contains the rest of elements and has the size of
ek − (gk,i − 1)dk,i.

• A set of r machines M = {Mp : p ∈ {1, . . . , r}}
is given. For each machine an availability calen-
dar Cp is defined. The calendar describes consec-
utive time intervals in which the machine is avail-

able and unavailable alternately. Machine unavail-
ability pauses setup and processing activities per-
formed by it.

• A non-empty set Mk,i is assigned to each opera-
tion which includes the machines that can process
elements in this operation.

• The processing time of a single element in the op-
eration Ok,i on the machine Mp ∈ Mk,i is repre-
sented by the parameter pk,i,p, hence, the process-
ing time of a sublot of size d equals d · pk,i,p.

• The setup time needed for the machine Mp to
changeover from processing the operation Ok1,i1

to the operation Ok2,i2 is defined as sp,k1,i1,k2,i2.
• The parameter vp1,p2 represents the time of trans-
port of any set of elements from the machine Mp1

to the machine Mp2.
• Any sublot is processed as a whole, which means
that all the elements assigned to the sublot have
to be transported to the target machine before the
processing starts and none of the elements can be
taken away from the machine before the process-
ing finishes.

• Any machine can be involved in at most one setup
or processing activity at time.

• All kinds of activities, i.e., transport, setup and
processing, have to be performed on a sublot with-
out interruption. However, the pauses caused by
a machine unavailability are not considered to be
the interruptions.

• The objective is to minimize the makespan
(Cmax), i.e., the finish time of processing of the
last sublot.

Fig. 1. Model of the LSR-FJS scheduling problem.

Volume 7 • Number 1 • March 2016 23

Management and Production Engineering Review

The above given problem statement does not
force any concrete assignment of elements to sublots,
except that the sublot sizes are imposed. Therefore,
the scheduling method and algorithm have to de-
termine the assignment of elements to sublots, the
assignment of sublots to machines, and sequence of
processing the sublots on every machine. These de-
cisions represent a solution unambiguously, provided
that a left-shifted schedule is considered.

Benchmark instances

Parameters of the LSR-FJS problem benchmark
instances are presented in Table 1. Except for the
number of jobs n = 100 and machines r = 50, all
values have been generated randomly using uniform
discrete probability distribution and given min/max
limits. The random selection of the parameter values
has been performed once and the obtained values
have been saved to the benchmark files. Thus, the
benchmarks represent completely deterministic in-
stances. The first subset of the parameters (nos. 1–6
in Table 1) represents quantities, and the second one
(nos. 7–11) concerns time intervals. The values have
been chosen that approximately reflect features of
the selected real-world production environment, i.e.,
the fastener factory. Jobs consist of 3 to 7 operations.
The number of parallel machines available for an op-
eration varies from 4 to 8. There are between 80 and
120 elements processed in a job, and between 10 and
30 elements in a sublot. This implies that the ex-
pected value of the number of sublots per operation
is 5, whereas minimum is 3 and maximum is 12. The
time parameters should be interpreted as expressed
in seconds. Therefore, the transport time values vary
from 15 to 25 minutes. The setup time has the val-
ues from 1 to 3 hours. The processing time related
to a single element equals at least 7.5 minutes, and

Table 1
Parameters of the benchmark instances.

No. Parameter
Value

min precisely max

1 n 100

2 r 50

3 |Ok| 3 7

4 |Mk,i| 4 8

5 ek 80 120

6 dk,i 10 30

7 vp1,p2 900 1500

8 sp,k1,i1,k2,i2 3600 10800

9 pk,i,p 450 1350

10 tON 50400 64800

11 tOFF 21600 36000

at most 22.5 minutes. A single interval of machine
availability has the length between 14 and 18 hours.
The lengths of unavailability intervals vary from 6 to
10 hours.

The benchmark instance consisting of 100 jobs
and based on the above mentioned parameters will be
denoted as P100. Additionally, the second instance,
P25, has been introduced by simple restriction of
P100 to the first 25 jobs.

Assuming that the time parameters are expressed
in seconds, the obtained makespan values are of the
order of days and, therefore, a day will be used as
the makespan unit in the remainder of the paper.

Scheduling approaches

The comparison of several scheduling approach-
es is the primary goal of this work. The approaches
have been differentiated on the basis of two aspects,
namely schedule variants and scheduling modes. The
variants and modes are unrelated, thus any combina-
tion of a chosen variant and mode can be considered
as a separate scheduling approach.

Schedule variants

In the case of lot streaming combined with flexi-
ble processing, a choice of intermingling configura-
tion impacts on a schedule variant. In this work,
three variants have been distinguished and denoted
as A, B, and C (Fig. 2).

Fig. 2. Schedule variants.

Variant A represents the standard schedule with-
out intermingling in which all sublots of any oper-
ation have to be processed one by one on a single
machine. Variant B allows intermingling of sublots
belonging to different operations, however, all sublots
of each operation have also to be processed on a
single machine. There are no specific restrictions in
variant C, i.e., each sublot can be processed on any
machine available for it and at any position of the
processing queue.

24 Volume 7 • Number 1 • March 2016

Management and Production Engineering Review

The specification of the variants implies the fol-
lowing observations:
• The variants in the sequence C, B, A are char-
acterized by increasing level of constraints. It is
easy to see that the constraints impose the rela-
tion SA ⊆ SB ⊆ SC , where Si is the solution space
related to the variant i.

• The above given relation between solution spaces
implies that vC ≤ vB ≤ vA, where vi denotes the
optimal value of any minimized objective, in par-
ticular Cmax, related to the variant i. Therefore,
the best solution is expected to exist in the vari-
ant C, but this variant has the largest solution
space, hence, it is the most difficult to optimize.

• The technological and organizational aspects of
manufacturing may force or exclude some of the
variants.
The conclusion is that no variant dominates ex-

plicitly over others. For that reason, it is justified to
implement and compare scheduling algorithms for all
the variants.

Scheduling modes

Three modes of scheduling are considered in the
work:
• Predictive scheduling in which all parameters are
defined precisely and do not change during the
scheduling process. In this mode, the manufac-
turing execution starts after the scheduling is fin-
ished, thus the scheduling algorithm can rearrange
all planned activities.

• Completely reactive scheduling which is the oppo-
sition of the previous one. In this mode there is no
plan generated in advance. Decisions are taken as
the reaction to events. Typically, when a machine
becomes free a next waiting activity (e.g. sublot
processing) is chosen and assigned to it.

• Predictive-reactive scheduling, which is a kind of
combination of the above mentioned modes, and
inherits the advantages of the both. The algorithm
constructs optimized partial schedule in advance
for a limited time horizon. Additionally, the algo-
rithm reacts to unpredictable events and repairs
the partial schedule in case of disruption.

Scheduling methods

A few methods have been used for supporting
the considered scheduling variants and modes. The
tabu search metaheuristic and constraint program-
ming have been chosen for the predictive schedul-
ing. The completely reactive scheduling has been
based on dispatching rules, whereas a multi-agent
system has been developed for the predictive-reactive

scheduling. The implementation of these methods is
presented in dissertation [32] in details. Here, only
essential description is given.

Tabu search

The tabu search metaheuristic, introduced by
Glover [33], is a method of discrete optimization de-
rived from the local search procedure. The main fea-
ture of it is the tabu list, which stores attributes of
last visited solutions. The solutions having attribut-
es on tabu list are forbidden. It prevents the search
from becoming stuck at a local minimum.

The tabu search is known to be very efficient in
scheduling problems, despite relatively simple imple-
mentation [34]. In order to use this metaheuristic,
several components have to be prepared: a problem
model, moves and neighborhood definitions, and the
tabu search procedure itself.

The model in the form of a vertex-weighted di-
rected graph has been used for the tabu search, which
is the typical formalism of this method. There are a
few subsets of vertices in the defined graph structure,
one subset for each of the activities, i.e., processing,
transport, and setup, as well as two special vertices:
the source and the sink. A processing vertex repre-
sents processing of a single sublot. The number of
sublots is determined by a scheduled instance and
does not change during optimization, thus the sub-
set of processing vertices is fixed in the graph model.
The problem formulation does not define explicitly
how to group elements in sublots. However, in order
to define the model precisely, a specific grouping has
been introduced. The sublots of each operation and
elements in these sublots have been thought as num-
bered sequentially, i.e., if the last element of the i-th
sublot has the number k, then the first element of
the (i+1)-th sublot has the number (k+1). Then, if
sublots of the next operation of the same job have the
size h, the j-th sublot consists of elements numbered
from 1 + (j − 1)h to jh, except for the last sublot,
which can be smaller. This transport organization
has also been applied in all other scheduling meth-
ods presented in this work. Under the given assump-
tion, the set of transport vertices is also well defined
by a problem instance and fixed in the graph model.
A setup is performed once before all sublots of an
operation if intermingling is forbidden (variant A),
but in the other variants the number of setups de-
pends on a specific solution, thus the subset of setup
vertices is not fixed. In general, the construction of
the graph has been divided into three phases:

• Instantiation of the elements that are independent
on the solution variant and the solution itself, i.e.,
the processing and transport vertices.

Volume 7 • Number 1 • March 2016 25

Management and Production Engineering Review

• Insertion of the elements which depend only on
the solution variant, among others: the arcs be-
tween processing and transport vertices (there are
some redundant arcs in the variants A and B that
can be left out, while it is impossible in the vari-
ant C), the setup vertices in the variant A (in the
variants B and C these vertices depend on a solu-
tion).

• Instantiation of all other elements that depend on
a concrete solution.

The first and the second phases are executed once
when the algorithm starts. Modifications of a solu-
tion during the search process affects only the ele-
ments inserted in the third phase. Makespan is rep-
resented by the length of the longest path from the
source to the sink in calculation which the weights
of the processing and setup vertices are adjusted to
represent the real activity duration on the basis of
machine calendars.

Several types of moves have been defined:

• Simple moves relocate a single sublot from an ini-
tial position to another one.

• Block moves transfer a coherent block of sublots
belonging to the same operation.

• Near moves change the position of an element or
a block on the same machine.

• Far moves transfer an element or a block to other
machine.

The neighborhood is a combination of the de-
fined moves, adapted to a given variant. It is obvious,
for example, that simple moves are inappropriate for
the variant A. The moves relocate only sublots from
the critical path, because it is well known that other
transfers cannot improve the value of makespan.

Other aspects of the algorithm implementation
are quite typical. Among others, the aspiration cri-
terion has been introduced which accepts uncondi-
tionally all solutions better than the current global
optimum. The variable length of tabu list has been
used which is determined in proportion to the mean
number of feasible solutions per iteration.

Constraint programming

Among the vast number of methods applicable
for off-line scheduling the constraint programming
has been chosen as the second method used in the
work. The characteristic of this method is that the
problem has to be explicitly described in terms of
decision variables and its domains, as well as con-
straints. In this aspect, the method is similar to
the another one, mathematical programming (for ex-
ample MILP), which is very often used in schedul-
ing. The constraint programming is less popular in
scheduling of the JS and FJS problems and their

extensions, however, the choice of this method is
not motivated directly by its general features, but
rather relates to the advantages of a specific software
tool.

In this work, IBM ILOG CP Optimizer solver
has been used. Two advantages of this tool are
important. Firstly, it shows excellent efficiency in
makespan optimization of the classic FJS problem.
This has been proved by the results published by
Quintiq [24] that are probably the best in compari-
son with any other announced results. Some of the
results on the Quintiq list have been obtained direct-
ly by the IBM solver and it has been checked that this
solver generates results close to the best ones also for
other instances. There are many methods of solving
CP problems [35] and implementation of an efficient
solver is a hard task. Thus, it is valuable that the tool
exists which has the good performance for the classic
FJS and this allows to expect that results will also
be satisfying in the case of the LSR-FJS problem.
The second advantage of the IBM solver is the syn-
tax and semantic extension which supports modeling
of scheduling problems. Modeling of such problems
using only scalar decision variables is sophisticated.
A few different MILP models can be formulated even
for the classic FJS [36]. Development of such a model
for the LSR-FJS problem could be enormous chal-
lenge. Nevertheless, this model has been implement-
ed with the support of the extended formalism of the
IBM solver in a quite easy way.

An interval decision variable is the primary ex-
tension introduced in the IBM solver for modeling
scheduling problems. This variable represents inter-
val of time related to some activity. It is described
mainly by start and end times, but also other pa-
rameters are defined, as presence, length, and size.
High level constraints can be defined on the inter-
val variables. For example, the span constraint in-
dicates that some interval spans over all present in-
tervals from a given set, i.e., it starts together with
the first interval from the set and ends together with
the last one. A considerable subset of the solver ex-
tensions accessible for modeling of scheduling prob-
lems has been exploited in this work, among others,
interval (obligatory and optional types) as well as
interval sequence decision variables, the constraints
of types: span, alternative, end before start, no over-
lap. The machine calendars specific to the LSR-FJS
problem have been transformed into intensity func-
tions.

A separate CP model has been designed for each
variant. Similarly as for the graph models, some ele-
ments of the CP models are common and others are
dedicated for the individual variants.

26 Volume 7 • Number 1 • March 2016

Management and Production Engineering Review

Dispatching rules

Dispatching rules are commonly used method for
the completely reactive scheduling. For each sublot
a value is calculated, called priority. Whenever any
machine becomes free, a sublot waiting for the ma-
chine with the highest priority is chosen for process-
ing on it.

When the dispatching rules are used, the schedule
execution is considered step by step and the priori-
ties are dynamically determined and applied. There-
fore, a simulation model of the problem is needed
for implementation of dispatching rules and, more
generally, for development of any dynamic schedul-
ing method. In the work, such a model has been
built using hierarchical timed colored Petri nets for-
malism [26]. Each of the specific formalism features
has been widely exploited. The most important is
the timed character of the formalism which makes it
possible to represent time relations between events
in the schedule. Coloring of the net means that to-
kens take values (colors) of defined types and these
values are processed when transitions are executed
according to some expressions. Coloring enhances ex-
pressiveness of the formalism significantly. For exam-
ple, the calculation of priorities and selection of the
highest one have been implemented in the form of
an expression in the colored Petri net model. Hier-
archization makes it possible to build a net by con-
necting separate modules using horizontal and verti-
cal compositions. The model of the LSR-FJS prob-
lem has a three-level hierarchical structure. On the
first (top) level two main modules are embedded,
namely production simulator and control rules. The
internal implementation of these modules is nest-
ed in the second level. In the case of the simula-
tor module, some parts that represent, e.g., machine
calendars and sublot resizing logic are additionally
nested in the third level. The simulator module re-
flects indeed behavior of the production system de-
scribed by a scheduling problem instance, therefore,
it is the same for all configurations. On the other
hand, the control rules module has a different im-
plementation for each dispatching rule and schedule
variant.

A few dispatching rules have been prepared:

• SET (minimum setup time). The highest priority
is assigned to the sublot which needs the shortest
setup time before processing.

• FIF (FIFO order). The priorities are determined
according to the order of the entry of sublots into
a machine processing queue – the higher priority
is assigned to the sublot which is earlier in the
queue.

• LIF (LIFO order). The inverse of the FIF rule –

the higher priority is assigned to the sublot which
is later in the queue.

• PES (longest remaining processing time, pes-
simistic). The priority of a sublot is equal to
the total time needed for processing all remaining
(i.e., not processed yet) sublots of the same job.
Processing times are determined pessimistically.

• OPT (longest remaining processing time, opti-
mistic). As in the case of the PES rule, but
processing times are determined optimistically.

• AVG (longest remaining processing time, average).
As in the case of the PES rule, but average values
of processing times are used.

Each of the above mentioned rules has been im-
plemented for each of the variants A, B and C.
The three versions of the longest remaining process-
ing time rule relate to the fact that sublots can be
processed on different machines with various times
and it is not known in advance which machine will be
chosen, thus the cases of minimum (OPT), maximum
(PES), and average (AVG) times have been distin-
guished. Execution of the rules is based on non-delay
assignment, i.e., just when a machine becomes free
the next waiting sublot can be and has to be chosen
for processing on the machine.

Multi-agent system

Agents are units of a software system typically
characterized by autonomy, intelligence, adaptation,
co-operation [37] and reactivity [38]. The reactivity
is the feature that makes an agent ready for receiving
external messages and responding to them in a suffi-
ciently short time. The autonomous agents perform
their activities independently and asynchronously,
but results of their work can be exchanged using co-
operation mechanisms. The features of agents’ reac-
tivity and autonomy have strongly facilitated imple-
mentation of the scheduling system, supporting its
reactive and predictive functions, respectively. Three
types of agents have been defined in the multi-agent
system architecture: machine, coordinator and con-
nector.

One machine agent is instantiated for each ma-
chine defined in the scheduling problem. These
agents concurrently perform two behaviors:

• Each machine agent stores on-going version of the
global schedule and continuously executes the op-
timization procedure which is based on the tabu
search algorithm implemented earlier for predic-
tive scheduling. However, the set of moves is re-
stricted in this case and the algorithm is allowed
to relocate only the sublots assigned to the re-
lated machine. The algorithm can also take away
sublots from other machine under special condi-

Volume 7 • Number 1 • March 2016 27

Management and Production Engineering Review

tions, but it never transfers a sublot to another
machine. These restrictions reduce search space
and make the agent possible to find new better so-
lutions faster, thus, its responsiveness is improved.
The agent does not modify the schedule itself, but
sends change propositions to the coordinator.

• The agent receives propositions of the schedule
modification prepared by other machine agents
and evaluates them. As the result, a vote is gen-
erated in the form of a value normalized to the
interval [−1, 1].

In the both above mentioned cases the machine
agents do not use the global makespan but the local
objective function, defined as the end processing time
of the last sublot assigned to the related machine.

The coordinator agent has specifically reactive
implementation. It receives notices about changes
of the production process state from the connector
and dispatches them to the machine agents. When
a new schedule is evolved, the coordinator deliv-
ers it to the connector. The coordinator agent is al-
so responsible for marshalling of the schedule mod-
ifications procedure. It checks change propositions
sent by machine agents against the global objec-
tive function and drops the propositions worsening
a solution, whereas accepts the ones that improve
the makespan. If a new proposed solution does not
change the makespan, the coordinator organizes vot-
ing. Each machine agent is asked to evaluate the
solution and to deliver a vote, then the coordinator
takes a decision on the basis of the sum of votes.

The connector agent intermediates between the
multi-agent system and the production environment.
Its implementation has to be adjusted to an actual
organization of a production system. In this work,
a simulation model of production has been used.
The connector agent scans the state of the produc-
tion system and sends to it recent schedules periodi-
cally.

The multi-agent system has been implemented
with the use of JADE platform. The HTCPN model
of the LSR-FJS problem, the same as in the previ-
ous case of completely reactive scheduling, has been
used for production process simulation. The system
uses a master plan which is a feasible schedule, not
necessarily optimized, pointing preliminary assign-
ment of sublots to machines and processing order.
The agents actively modify and optimize this plan
using the following mechanism:

• the sublots scheduled to start in time not longer
than tb are blocked and cannot be further relocat-
ed,

• arrangement of ns sublots following the blocked
ones is controlled by the agents and optimized,

• when consecutive sublots become blocked, the new
ones are imported from the master plan to the con-
trolled set,

where tb and ns are parameters of the system.

The multi-agent system has been created only for
variant B, because its implementation is more time-
consuming in comparison with other methods and
details are strongly related to the variant. Moreover,
this method seems to be not very useful for variant A,
because of remarkably limited control over a schedule
when intermingling is forbidden.

Results

The combinations of modes, methods, models
and problem variants for which computational exper-
iments have been conducted are presented in Fig. 3.

Fig. 3. Computational experiments scope overview.

In the case of the predictive scheduling methods,
the experiments have involved the bigger instance
P100 and the smaller one P25. It was needed, be-
cause the size of a problem instance affects the results
of predictive scheduling significantly. On the other
hand, the dispatching rules method uses negligible
amount of computational resources during real-time
execution, while the multi-agent system constructs
a schedule for a limited number of sublots in ad-
vance. Therefore, the size of a problem instance does
not have a major impact on efficiency of the consid-
ered dynamic scheduling methods. For that reason,
only the instance P100 has been used to test them.

The comparison of the results obtained using pre-
dictive scheduling method is shown in Fig. 4. The
time of algorithm execution was 24 hours in the case
of P100 and 1 hour in the case of P25, for both meth-
ods and each variant. These times are a few or several
times shorter than related makespan, hence correctly
chosen for off-line scheduling.

28 Volume 7 • Number 1 • March 2016

Management and Production Engineering Review

Fig. 4. Comparison of predictive scheduling results: TS –
tabu search, CP – constraint programming.

The scheduling based on constraint programming
has been executed once for each of the six configu-
rations, because a deterministic algorithm is used in
the solver and repetitions give the same results. The
used tabu search implementation is also determin-
istic, but initial solutions for it were generated ran-
domly, thus the final results are also conditioned ran-
domly. For each variant of the instance P25 the tabu
search algorithm has been repeated 10 times. The
values of makespan obtained in these repetitions are
very well concentrated (Fig. 4). The optimization of
the instance P100 based on the tabu search has also
been executed once for each variant, because of the
long time of this procedure.

It is a curious result for the tabu search that the
makespan is definitely the worst in variant C for P100
and definitely the best in the same variant for P25
(Fig. 4). It confirms the previously formulated hy-
pothesis that it is difficult to point the most suitable
variant in advance. One should rather execute opti-
mization using all these variants and select the best
result.

The effects of the makespan optimization are def-
initely worse in the case of the constraint program-
ming (Fig. 4). The results are satisfactory and similar
to those obtained by the tabu search only in vari-
ant A. In the other variants the makespan is unac-
ceptable. The combinatorial complexity increased by
introduction of intermingling in these variants has
become too high for the solver.

The results of using of dispatching rules are
shown in the form of a box plot in Fig. 5. Each
dataset consists of 100 values obtained by repetitions
of simulation for a given variant and rule. The results
lead to the following findings:

• The makespan values are patently dispersed. It
is the effect of partial indeterminism caused by
random selection of a machine sequence in which
the rules are applied if many machines are waiting
for sublots. Nevertheless, in general, medians dif-
fer significantly and better or worse rules can be
indicated.

• No rule prevails in all variants. In variant A rule
PES is the best, but rules FIF, OPT and AVG
give similar results. In variant B and especially in
variant C rule SET dominates definitely.

• The worst results have been obtained in variant B.
It is characteristic that the similar relation also ex-
ists in the case of majority of predictive schedul-
ing results. Therefore, it seems to be pointless to
extend the manufacturing organization from the
model based on variant A to the one based on vari-
ant B considering use of the proposed dispatching
rules.

Fig. 5. Comparison of dispatching rules.

In Fig. 6 the results obtained using multi-agent
system are presented and all results for the instance
P100 are collected. The multi-agent system has been
configured with the parameters: tb = 24 h, ns = 500.
Four experiments have been conducted using differ-
ent versions of the master plan:

• RAND – A randomly generated schedule with the
makespan equal to about 32 days has been used
as the master plan for dynamic scheduling.

Fig. 6. Collection of results for the instance P100: TS –
tabu search, CP – constraint programming, DR – dis-

patching rules, MAS – multi-agent system.

Volume 7 • Number 1 • March 2016 29

Management and Production Engineering Review

• BEST – The best solution obtained using off-
line scheduling (tabu search, variant A) with the
makespan equal to about 12 days has been used
as the master plan.

• BRK 1 – The master plan in the form of the best
solution has also been used, but the plan execution
has been disturbed by additional machine unavail-
ability intervals. This prolonged makespan of the
original best schedule to the value BRK REF (Fig.
6). The additional unavailability intervals have not
been known for the multi-agent scheduling system.

• BRK 2 – The same configuration as in the case of
BRK 1, but the additional unavailability intervals
have been known for the scheduling system.

The experiments have been repeated 10 times
for each version. It is evident that the results of
predictive-reactive scheduling are, in general, very
successful and close to the ones obtained by the
tabu search (Fig. 6). Even if a schedule is not pre-
liminarily optimized off-line, the multi-agent system
achieves low values of the makespan (RAND), sig-
nificantly smaller than in the case of the complete-
ly reactive mode. It proves that the predictive layer
of the system works effectively. The system is also
able to make use of an optimized master plan, as it
points the comparison BEST vs RAND. Moreover,
the system improves a schedule disrupted by dis-
turbances (BRK REF vs BRK 1 and BRK 2). This
improvement is only slightly better when the sys-
tem knows the disturbances in advance (BRK 1 vs
BRK 2) which suggests that the reactive layer is of
leading importance in this process.

Comparison of all results obtained for the in-
stance P100 (Fig. 6) shows that the completely best
makespan has been achieved by the tabu search in
variant A. The effects of combinations of methods
and variants (TS, B), (CP, A), (MAS, B) are only
slightly worse. There are meaningful differences be-
tween the worst and the best dispatching rules used
for each variant. In particular, the median makespan
value which characterizes the best rule in variant C
is similar to that obtained by the tabu search in the
same variant, although the dispatching rule has the
considerably simpler implementation and the advan-
tage of reactivity. The best dispatching rules lead
to definitely better results than constraint program-
ming in variants B and C, so the used CP method
seems to be practically useless in these cases.

Resume of scheduling methods

The comparison presented above involves only
one aspect of the considered methods, namely the
objective value. The findings should be supplement-
ed by other observations.

The tabu search is a method suitable for predic-
tive scheduling. It generally ensures very effective op-
timization which should be, however, verified in a
concrete application. For example, the implementa-
tion used in this work has transpired to have different
relative effectivity for tested instances and variants
(Fig. 4). Moreover, the implemented algorithm is sig-
nificantly better than dispatching rules in variants A
and B, but not in variant C (Fig. 6). The repair of
a schedule is time-consuming in the process of pre-
dictive scheduling, hence this mode is preferable in
the manufacturing systems in which disturbance lev-
el is relatively low. It can also be used for generation
of master plans dedicated for predictive-reactive pro-
duction control systems.

The constraint programming, complemented
with extensions for scheduling problem modeling,
is also a powerful tool for implementation of pre-
dictive scheduling solutions. It is especially usable
when a problem is characterized by a large set of
constraints that are not known precisely in advance
and may change in time. In such a situation the con-
straint programming model can be adjusted much
more easily than a graph model. It is even possible
to define a set of constraints configurable by the end
user. The disadvantage of this method is, in turn,
that the effectivity of optimization may be poor and
it is worth comparing it with alternative methods
before final implementation.

The dispatching rules, as the method of complete-
ly reactive scheduling, can be preferable in the sys-
tems characterized by high level of disruptions. In
such a case the advantage of this method relates to
the fact that no schedule is constructed in advance.
This schedule would be damaged by disturbances,
hence the unnecessary effort is omitted. Sometimes,
the results of reactive and predictive scheduling may
be similar, even if no disruptions are present, the
tabu search and the rule SET applied to the instance
P100 in variant C are the example (Fig. 6).

The implemented multi-agent system combines
predictive and reactive functionalities and their ad-
vantages. It can operate standalone as a comprehen-
sive scheduling module, however, the master plan can
be additionally optimized off-line at first to further
improve the result.

Conclusion

In this work, different manufacturing scheduling
approaches have been compared. The results can be
summarized by several major findings:

• The tabu search algorithm provides very high per-
formance in optimization of complex scheduling

30 Volume 7 • Number 1 • March 2016

Management and Production Engineering Review

problems. Its implementation requires preparation
of a detailed graph model of the problem which is
not trivial. Nevertheless, the overall implementa-
tion is quite simple and even typical basic config-
uration often leads to satisfactory effects. There-
fore, the tabu search is proposed as an initial
method for research with a new scheduling prob-
lem and as a source of referential results.

• The performance of different dispatching rules is
highly diversified. It suggests that intensified re-
search is needed for looking for the best rules. The
prepared HTCPN model of the LSR-FJS schedul-
ing problem makes it possible to develop and test
dispatching rules in an easy way. The simulation
problem model can be quickly modified or ex-
tended. The restrictions which impose a specific
scheduling variant or a concrete rule may be ad-
justed by net substructures inserted into the mod-
el. Future work is planned, based on the developed
HTCPN model, in which more sophisticated com-
posite dispatching rules will be prepared and con-
figured by an optimization algorithm, e.g., genetic
programming. The goal of this research is to verify
how effectively the advanced dispatching mecha-
nisms would be able to perform reactive control
in comparison with the simple rules developed so
far.

• The implemented multi-agent system has re-
vealed excellent performance in predictive-reactive
scheduling. On the one hand, the results of
scheduling are close to that obtained by off-line
optimization, although the system works in real-
time and controls only a subset of sublots at any
moment. On the other hand, the reactive action
is evident and considerable, as the system repairs
disturbed solutions. Even though it does not know
disruptions in advance, it detects them in real-
time. Because of the successful implementation,
further work is planned. The robustness of the
system to various disturbances is going to be in-
vestigated more extensively. It is also planned to
verify the algorithm performance using scheduling
problem instances from a real-world manufactur-
ing system.

The work provides suggestions about method se-
lection and algorithm implementation for produc-
tion scheduling, taking into account the most pop-
ular scheduling modes. The proposed solutions have
been verified on the LSR-FJS problem. This problem
combines flexible job shop structure, lot streaming
with variable sublots, transport times, setup times,
and machine calendars. Therefore, this formulation is
very versatile and can be adapted to many real-world
cases. Majority of the findings presented in this work

are, however, not related to very specific features of
the LSR-FJS problem and they will also be true for
other problems, if appropriate models are developed
for them.

References

[1] Pinedo M.L., Scheduling. Theory, Algorithms, and
Systems, Springer-Verlag, New York, 2012.

[2] Calleja G., Pastor R., A dispatching algorithm for
flexible job-shop scheduling with transfer batches: an

industrial application, Prod. Plan. Control, 25, 2,
93–109, 2014.

[3] Defersha F.M., Chen M., Mathematical model and
parallel genetic algorithm for hybrid flexible flow-

shop lot streaming problem, Int. J. Adv. Manuf.
Tech., 62, 1, 249–265, 2012.

[4] Demir Y., İşleyen S.K., An effective genetic algo-
rithm for flexible job-shop scheduling with overlap-

ping in operations, Int. J. Prod. Res., 52, 13, 3905–
3921, 2014.

[5] Jun-jie B., Yi-guang G., Ning-sheng W., Dun-bing
T., An Improved PSO Algorithm for Flexible Job
Shop Scheduling with Lot-Splitting, International
Workshop on Intelligent Systems and Applications,
2009.

[6] Al-Hinai N., ElMekkawy T.Y., Robust and stable
flexible job shop scheduling with random machine

breakdowns using a hybrid genetic algorithm, Int. J.
Prod. Econ., 132, 2, 279–291, 2011.

[7] Hasan S.M.K., Sarker R., Essam D., Genetic algo-
rithm for job-shop scheduling with machine unavail-

ability and breakdowns, Int. J. Prod. Res., 49, 16,
4999–5015, 2011.

[8] He W., Sun D.-h., Scheduling flexible job shop prob-
lem subject to machine breakdown with route chang-

ing and right-shift strategies, Int. J. Adv. Manuf.
Tech, 66, 1, 501–514, 2013.

[9] Li J.-Q., Pan Q.-K., Tasgetiren M.F., A discrete ar-
tificial bee colony algorithm for the multi-objective

flexible job-shop scheduling problem with mainte-

nance activities, Appl. Math. Model., 38, 3, 1111–
1132, 2014.

[10] Wang S., Yu J., An effective heuristic for flexible
job-shop scheduling problem with maintenance ac-

tivities, Comput. Ind. Eng., 59, 3, 436–447, 2010.

[11] Zribi N., Borne P., Hybrid Genetic Algorithm for
the Flexible Job-Shop Problem Under Maintenance

Constraints, Advances in Natural Computation,
Wang L., Chen K., Ong Y. [Eds.], LNCS 3612,
Springer Berlin Heidelberg, 259–268, 2005.

Volume 7 • Number 1 • March 2016 31

Management and Production Engineering Review

[12] Bożejko W., Uchroński M., Wodecki M., Multi-
machine scheduling problem with setup times,
Archives of Control Science, 22, 4, 441–449, 2012.

[13] Gröflin H., Pham D.N., Bürgy R., The flexible
blocking job shop with transfer and set-up times, J.
Comb. Optim., 22, 2, 121–144, 2011.

[14] Kunadilok J., Heuristics for Scheduling Reentrant
Flexible Job Shops with Sequence-dependent Setup

Times and Limited Buffer Capacities, PhD Thesis,
Clemson University, 2007.

[15] Mousakhani M., Sequence-dependent setup time
flexible job shop scheduling problem to minimise to-

tal tardiness, Int. J. Prod. Res., 51, 12, 3476–3487,
2013.

[16] Rohaninejad M., Kheirkhah A., Fattahi P., Simulta-
neous lot-sizing and scheduling in flexible job shop

problems, Int. J. Adv. Manuf. Tech., 78, 1, 1–18,
2015.

[17] Rossi A., Flexible job shop scheduling with sequence-
dependent setup and transportation times by ant

colony with reinforced pheromone relationships, Int.
J. Prod. Econ., 152, 253–267, 2014.

[18] Sarin S.C., Jaiprakash P., Flow Shop Lot Streaming,
Springer US, 2007.

[19] Aytug H., Lawley M. A., McKay K., Mohan S., Uz-
soy R., Executing production schedules in the face of
uncertainties: A review and some future directions,
Eur. J. Oper. Res., 161, 1, 86–110, 2005.

[20] Ouelhadj D., Petrovic S., A survey of dynamic
scheduling in manufacturing systems, J. Sched., 12,
4, 417–431, 2009.

[21] Liu N., Abdelrahman M., Ramaswamy, S., A Com-
plete Multiagent Framework for Robust and Adapt-

able Dynamic Job Shop Scheduling, IEEE Trans.
Syst., Man, Cybern., Part C: Applications and Re-
views, 37, 5, 904–916, 2007.

[22] Lou P., Liu Q., Zhou Z., Wang H., Sun S.X., Multi-
agent-based proactive–reactive scheduling for a job

shop, Int. J. Adv. Manuf. Tech., 59, 1–4, 311–324,
2012.

[23] Laborie P., IBM ILOG CP Optimizer for Detailed
Scheduling Illustrated on Three Problems, Integra-
tion of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Prob-
lems, Hoeve W.-J., Hooker J.N. [Eds.], LNCS 5547,
Springer Berlin Heidelberg, 148–162, 2009.

[24] Quintiq. World records: Flexible job shop schedul-
ing problem,

http://www.quintiq.com/optimization/fjssp-world-
records.html [accessed on December 14, 2015].

[25] CPN Tools Homepage, http://cpntools.org, [ac-
cessed on December 14, 2015].

[26] Jensen K., Kristensen L.M., Coloured Petri Nets –
Modelling and Validation of Concurrent Systems,
Springer-Verlang Berlin Heidelberg, 2009.

[27] Zhang H., Gu M., Song X., Modeling and Analysis
of Real-Life Job Shop Scheduling Problems by Petri

nets, Simulation Symposium, ANSS 2008, 41st An-
nual, 279–285, 2008.

[28] Aized T., Modelling and performance maximization
of an integrated automated guided vehicle system us-

ing coloured Petri net and response surface methods,
Comput. Ind. Eng., 57, 3, 822–831, 2009.

[29] JADE. Java Agent Development Framework,
http://jade.tilab.com, [accessed on December 14,
2015].

[30] Leitão P., Restivo F., ADACOR: A holonic architec-
ture for agile and adaptive manufacturing control,
Comput. Ind., 57, 2, 121–130, 2006.

[31] Nouiri M., Bekrar A., Jemai A., Niar S., Ammari
A.C., An effective and distributed particle swarm op-
timization algorithm for flexible job-shop scheduling

problem, J. Intell. Manuf., 1–13, 2015 [published on-
line, DOI: 10.1007/s10845-015-1039-3].

[32] Bożek A., Using Petri nets, multi-agent techniques
and computational intelligent methods in produc-

tion planning and control (in Polish), PhD thesis,
Rzeszów University of Technology, 2015.

[33] Glover F., Artificial intelligence, heuristic frame-
works and tabu search, Managerial & Decision Eco-
nomics, 11, 365–378, 1990.

[34] Watson J.-P., Beck J.C., Howe A.E., Whitley
L.D., Problem difficulty for tabu search in job-shop
scheduling, Artif. Intell., 143, 2, 189–217, 2003.

[35] Rossi F., van Beek P., Walsh T. [Eds.], Handbook of
Constraint Programming, Elsevier, Pisa, Italy, 2006.

[36] Demir Y., İşleyen S.K., Evaluation of mathemati-
cal models for flexible job-shop scheduling problems,
Appl. Math. Model., 37, 3, 977–988, 2013.

[37] Leitão P., Agent-based distributed manufacturing
control: A state-of-the-art survey, Eng. Appl. Artif.
Intel., 22, 7, 979–991, 2009.

[38] Sycara K.P., Multiagent systems, AI Magazine, 19,
2, 79–92, 1998.

32 Volume 7 • Number 1 • March 2016

