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Abstract

In this paper, an experimental surface roughnealysis in milling of tungsten carbide using a maitat torus
cubic boron nitride (CBN) tool is presented. Thadgsten carbide was receiveding direct laser depositi
technology (DLD). The depth of cuay), feed per toothf) and tool wear\(B) influence on surface roughn
parametersRa R2 were investigated. The cutting forces and acastars of vibrations were measured in o
to estimate their quantitative influence BaandRzparameters. The surface roughness analysis, fiepdin
of view of milling dynamics was carried out. Thendoative factor in the research was not feed pethtf,
(according to a theoretical model) but dynamicammena and feed per revolutioconnected with them
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1. Introduction

Tungsten carbide has excellent physicochemicglgt@s such as superior strength, high
hardness, high fracture toughness and high abrasiear-resistance. These properties
impinge wide application of tungsten carbide inustly for cutting tools, molds and dies.

The most popular method for producing tungsten idarlcomponents is by powder
metallurgy technology. Nonetheless, for individusimall quantity production or product
prototyping this method is too costly and time aonsg. The alternative to powder
metallurgy is Direct Laser Deposition (DLD) techogy, which can be used to quickly
produce metallic powder prototypes by a layer mactuiing method [1, 2].

Direct Laser Deposition is an extension of therdatadding process, which enables three-
dimensional fully-dense prototype building by cladp consecutive layers on top of one
another [3].

DLD technology is increasingly being used in prddut of functional prototypes, to
modify or repair components which have excellentdhess, toughness and abrasion wear-
resistance. In the near future DLD technology Wélused in manufacturing of spare parts in
long term space missions [4] or submarine appboati5].

Presently, most components produced by DLD teclyyol@ave unsatisfactory geometric
accuracy as well as surface roughness and reqoime ost-process machining to finish
them to required tolerances [6].

Recently tendencies are seen to machine brittlena#t, such as tungsten carbide and
silicon carbide, by a superhard CBN (cubic bordnde) and PCD (polycrystalline diamond)
cutters in cutting conditions assuring ductile iogft[7 — 9]. The authors of paper [7] have
investigated CBN tool wear in milling of tungstearloide. According to their research
machined surface roughness shows insignificant ggnavith the progress of the tool flank
wear. In the papers [8, 9] theoretical analyseshenductile cutting of the tungsten carbide
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workpiece in relation to the temperature, hardrass fracture toughness of the workpiece
material were carried out. The investigation inthdathat in the cutting of tungsten carbide
there is a transition between ductile chip formatamd brittle chip formation. The transition

depends on the tool geometry, the workpiece matmdthe cutting condition.

Geometric accuracy is very often understood asasarfoughness, defined by parameters
Ra andRz according to ISO 4287:1984. One of the most sicgnit conditions influencing
surface roughness is feed (for conventional wodgienaterials such as steels and non-
ferrous metals). The increase of feed per tdpthads to an increase of surface roughness.
Many authors indicate that cutting speeds also a very important parameter influencing
surface microroughness.

Discussing the most important conditions influegcgurface roughness, the influence of
process dynamics should be also taken into accolimt. process dynamics is mostly
characterized by the forces and vibrations. Vibraiin a machining process are caused by
many various parameters e.g. for rotational elemémill), even the smallest tool-spindle
subsystem unbalance generates a centrifugal foliehwincreases with rotational speed
increase. Therefore very often the dominative faicttbuencing surface roughness is not feed
per toothf,, but feed per revolutiohconnected with rotational speed

The present state of knowledge related to surfaoghness generated in the machining
process primarily applies to conventional materidf&achining of tungsten carbide is a
relatively novel process. Therefore the number ofks connected with this problem is
comparatively small, and tungsten carbide cuttinigitg is still insufficiently examined.

2. Research range and method

The main purpose of the work was surface roughaesdysis in milling of tungsten
carbide using monolithic torus cubic boron nitr{@BN).

Tungsten carbide obtained through direct laser sigpo technology (DLD — see Fig. 1)
was used as the machined workpiece in this studthik research a 2—toothed cubic boron
nitride monolithic torus end mill was used. Toohuieter wasl = 12 mm, corner radius
wasr, = 0.5 mm, cutting edge inclination angle was= (® and the radius of tool arc
cutting edge was, = 4 um (see Fig. 2). The cutting tests were conductethoe milling
conditions on 5-axis DECKEL MAHO model DMU 60monoBCK milling center. The
research range is depicted in Table 1. Two serieutiing tests were performed. In the
first series the tool wear for two different cugispeeds was examined. This series also
included the measurement of surface roughness gheasn In the second series surface
roughness parameters were measured for all comdmnsadf feed per tooth and depth of

cut a,.
R TR R e CBN cutter
ngsten carbide W

Fig. 2. CBN end mill applied in the
Fig.1. The machined sample research

CBN torus end mill applied in the research had meoradiusr, = 0.5 mm, while the
axial depth of cut was, = 0.02 mm, which indicates that the corner raduas 25 times
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greater than the depth of cut. Therefore the CBN ¢ot the material by its face part (see
Fig. 3) instead of the cylindrical one.

Tool wear determined by théB. indicator was measured after each pass (lengtnef
pass — length of the sample = 20 mm) on the optic microscope with 0.01mm saaterval,
according to the scheme depicted in Fig. 4.

Table 1. Research range

Series |
cutting speed rotational | feed per tooth| feed rate axial radial tool wear
No _ speeq _ depth of| depth of
| Ve[m/min] | n[rev/imin] | f,[mm/tooth] | v; [mm/min] cut cut VB [mm]
a, [mm] | ae [mm]
1 68 1800 180
> 150 3980 0.05 308 0.02 6 <04
Series I
No. 8 fz Ve ac VB
[mm] [mm/tooth] [m/min] [mm] [mm]
1 0.010 0.025; 0.05; 0.075; 0.1
2 0.015 0.025; 0.05; 0.075; 0.1 68 6 <0.05
3 0.020 0.025; 0.05; 0.075; 0.1

Fig. 3. Schematic illustration of face milling pess and Fig. 4. Tool wear
the view of the sample measurement

All the surface roughness measurements were caotedn the machined surface after
the face milling process. Three-dimensional (3Damegements [10 — 13] were achieved
using a stationary profilometer Hommelwerke T800®Wo dimensional measurements
were made by a T500 profilometer (Hommelwerke), ipged with T5E head and
Turbo DATAWIN software. The sampling lengtth= 0.8 mm, the evaluation lengitn= 51r
= 4.0 mm, the length of cut-offave ic (cut—off) = 0.8 mm and an 1SO 11562(M1) filter
were applied. After each pass the surface roughwassmeasured parallel to thevector
(feed rate — see Fig. 3). As a result of 2D measengs the surface profile charts were
obtained. On the basis of surface profile charesRh and Rz parameters were calculated
using Turbo Datawin-NT software.

Parallel to the tool wear measurements, the cufiinge and acceleration of vibration
components were measured (in the machine tool cwies — see Fig. 5), in the following
directions: directionX — feed normal force measuremeéit [N], directionY — feed force
measurement; [N], direction Z — thrust force measuremef} [N], and directionX —
acceleration of vibrations in the feed directi®p [m/s], direction Y — acceleration of
vibrations in the feed normal directiddy [m/s7], directionZ — acceleration of vibrations in
the thrust directiom, [m/s7.
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Fig. 5. Block scheme and a view of the cutting éoanid acceleration of vibrations experimental agpiar
3. Research results and analysis
3.1. Influence of tool wear on surface roughness
As presented in Table 1, the cutting speg@nd tool wealB; were variable in the

research. For that reason, in the first place trenges of tool wear in function of cutting
time ts were analyzed (see Fig. 6).

a) b)
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Cutting tool =12 mm Cutting tool ¢=12 mm
0.25 r.=0.5mm,r,=5mm . 0.35 (r,=05mm,r,=5mm .z,
- As=00, =00 z VBc_s‘r 2= 00, 5= 00 "---0---
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o 3 . ; — 0.20 / 4
o et - : e
S 7 e Workpiece: WC Q Yy
0.10 Cutting tool: CBN - > 015 ,"/ Workpiece: WC
n = 3980 rev/min g4 Cutting tool: CBN
0.05 V. =68 m/min 0.10 7 n = 3980 rev/imin
- f,=0.056 mm/tooth,z=2 v, = 150 m/min
a,=0.02 mm, a.= 5 mm 0.05 f,= 0.05 mm/tooth, z=2 -
0.00 < [ [ 2,=0.02 mm, a. =5 mm
0 2 4 6 8 10 12 14 16 18 20 22 24 0.00
t. [min] 0 1 2 3 4 5
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c)

0.60 | Workpiece: Tungsten carbide, Cuttingtool: CBN
f-= 0.05mm/tooth, z= 2, a,=0.02mm. a,=5 mm
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E
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Fig. 6. a), b) Tool wear in function of cutting & for two investigated cutting speeds c) tool wear
comparison for exemplary dullness criterB, = 0.2 mm £, z, — number of toothT,, T, — tool life)
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As it can be seen, the tool wear process for eaokhtis similar, i.e. there are no
significant deviations oWB; values for respective teeth. Introducing an aabjtrdullness
criterion VB, = 0.2 mm, it can be seen that a twofold cuttingesp/. increase caused an
almost eightfold tool lifeT decrease. On the basis of acquired datasteeponent used in
Taylor's equationT = C1/ve", whereCr is constant dependent of workpiece properties)oean
estimated, but it is necessary to emphasize th@rmdaing thes exponent from two
experimental values is not very accurate. Aftersadgration of thex, Ve, T1 andT,, thes =
2.65 was obtained. This value is located in thgeaof thes exponents characteristic for high
speed milling of hardened steel, thus the interdityutting speed. influence on tool lifer
in tungsten carbide milling is similar to that feeirdened steel.

Moreover, the tool wear concentrates on the flade fof the tool (see Fig. 6¢). Because of
this the relations between the tool wear and botbes and vibrations in the thrust direction
were observed (see Fig. 7). The correlation cdefficR? for cutting force and vibration
components in the feed normal directiomAr and Fy shows that there is no correlation
between the tool wear and RMS values of measuggthlsi. In case of force and vibration
thrust direction &, Fp =f (VB)) a clear relation between tool wear and meassigthls was
observed. In this case the correlation coefficRhts equal to 0.8 — 0.95, which shows that
tool wear has an influence on cutting force andatibn components in the thrust direction.
Similar dependencies were observed for a cuttiegdwf v. = 150 m/min.
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Fig. 7. Comparison of RMS values of cutting forogl @ibration components in various directions as a
function of tool wear\(; = 68 m/min)

During machined surface generation in face millitge knowledge about nature and
amplitude of forces and vibrations in the thrustediion (orthogonal to the investigated
surface) has an essential meaning — particulagyasidynamic variation. Temporary force
variation leads to tool corner displacement (alanglosed trajectory in th¥ — Y plane),
which propagates directly to the workpiece and thaeerating micro—unevenness on the
machined surface. The greater tool corner displaogsn(vibrations) lead to higher micro-
unevenness and as a consequence surface roughneseers.

Unfiltered P-profile and corresponding to them frequency spefir thrust force~, are
depicted in Fig. 8 and 9.
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In case of face milling the thrust forég acting in the direction parallel to the height of
surface micro—unevenness is highly responsiblestioface roughness form and value. From
the frequency spectra charts it can be seen thahéothrust forcd=, only the spindle speed
frequencyfo, and its second harmorzefoare dominant (similar dependencies were observed
for the other force and vibration directions).

a) b)
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Fig. 8. a) UnfilteredP-profile; b) F, frequency spectrum for, = 150 m/min and/B; = 0.27 mm
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Fig. 9. a) UnfilteredP-profile; b) F, frequency spectrum for, = 68 m/min and/B; = 0.22 mm

In this case (number of teeth= 2, v = 68 m/min,n = 1800 rev/min ando = n/60) the
second harmoni2-fooverlaps with tooth passing frequencyf¢z z-fg. For the frequencfo
= 30 Hz (see Fig. 9) the tool revolution periad equal to 0.0333s, which at the feedrate
180 mm/min corresponds to= 0.1 mm transference. This transference corresgpprecisely
to feed-per-revolution value= 0.1 mm/rev, whereas the second harmanioc= 60 Hz is
equal to feed per tootH,(= 0.05 mm/tooth). The same dependencies were \aabdor
cutting speed/, = 150 m/min. Since in most frequency spedtraand z-fo frequencies are
dominant, the principal factors influencing thenfoof surface roughness could be feed-per-
revolutionf and feed-per-tootf; (as established in Equatio 1

This statement is confirmed by 3D surface roughmedssts including a Power Density
Function analysis (see Fig. 10, 11) on wHiemdf, values are clearly visible.

VB.=0.24 mm 100 m
c .
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Fig. 10. 3D surface roughness chartvior 68 m/min and corresponding Power Density Functio
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Fig. 11. 3D surface roughness chartvipr 150 m/min and corresponding Power Density Foncti

For the cutting speed = 68 m/min feed-per-revolutiohvalue is dominant (see Fig. 10),
and hence its participation in generation of mien@venness is higher than that for feed-per-
tooth f,. In the second case (whep= 68 m/min — see Fig. 11) tHeandf, participation is
comparable and therefore 3D surface roughnessscfmarinvestigated cutting speeds have a
different form. CumulativeRa and Rz parameters charts in function of tool weés. are

shown in

Fig. 12 and 13

While in some instances the cinematic — geometriations were seen, for the whole
investigated range (the range of tool wear) noetation between the surface roughness

paramete

rs and tool wear was found. For both aedlgases (i.e. for, = 68 m/min and/ =

150 m/min) feed per tooth wés= 0.05 mm/tooth.
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Fig. 12. Surface roughneBs andRzin function of tool weaW B for v, = 68 m/min
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Fig. 13. Surface roughneBsa andRzin function of tool weak B, for v, = 150 m/min

The height of theoretical surface roughness catiebermined from the following equation

[15]:

where:

111

.I:2
Rt max=—2-[1000 [pm 1
_ St [um] (1)

£

Rt_maxum] — theoretical surface roughness,
r [mm] — the cutting edge radius,
f, [mm/tooth] — feed per tooth.
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Using Equation 1 the theoretic surface roughneige\Rt maxcan be calculated, which
by assumption should be higher than Revalue. After substituting cutting parameters to
Equation 1 theRt_maxvalue equal to 0.62Gm was obtained, while the lowest real surface
roughness value wdgz= 2.00um (for vc = 150 m/min an&/B; = 0.33 mm). It shows that the
theoretical model is very inaccurate.

3.2. Influence of feed-per-tooth f, and depth of cut a, on surface roughness

For the second investigated series (see Tabléné)depth of cut, and feed-per-tootl
were variable. Fig. 14 depicts exemplary profilarth and corresponding to théda andRz
parameters for various feed-per-todglvalues. As can be seen, the fourfold feed-peratoot
f, increase did not make any significant qualitatared quantitative surface unevenness
changes. It denotes that feed insignificantly iaflues surface roughness, which is not in
full agreement with the results shown in Fig. 15.
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Fig. 14. Exemplary profile charts for various feest toothf, values
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Fig. 15. 3D surface roughness fgr= 68 m/mina, = 0.02 mmf, = 0.1 mm/tooth
and corresponding Power Density Function

Three dimensional micro-unevenness image showsittenatic-geometric projection of
the cutting edge in the workpiece. It is confirnigdthe Power Density Function chart, from
which the dominative pedk= 0.1 mm/tooth is seen.

It turns out that for some instances, a charattercsematic-geometric projection of the
cutting edge in the workpiece can be seen, howievarwider surface roughness range there
Is no typical relation. Fig. 16 depicts surfacegioness parameteRa and Rz (for v, = 68
m/min) in function of feed-per-tooth. From these charts no influence of feed-per-tdpth
on surface roughness is seen, despitg ®f0.1 mm/tooth. In this case the theoretic value
of Rztis comparable to the reRlzvalue. It is commonly known that the increaseexdd-
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per-tooth f, is accompanied by the increase of surface roughn@&xuation 1).
Theoretically, the lower the feed is fixed a loveerrface roughness is generated (see Fig.
16). Nevertheless in practice the differences betwéheoretical and real surface
roughness values are increasing with feed deciédsd.5].

Similar conclusions can be proposed from cumula®aeandRz charts for alla, andf,
combinations (see Fig. 17). Twofol and fourfoldf, increase caused insignificaRa
and Rz change. Therefore in the range of conducted rekea® unequivocal increase of
surface roughness in function of investigated fextoas stated.

0.60 3.00
0.50 /"' 250
— 0.40 //o\\ » _ 2.00 —— <
= \/ = —
2 o030 | Z 150 . Ve=68m/min R
© V.= 68 m/min N . a,=0.02mm ’,l
X 59  3=002mm € o0 | VB.<0.01mm L
’ VB;<0.01 mm : r,=05mm -7 Rzt
= =5 PR
o0 - IRONT 0.50 | T >HM o
r,=5pm e
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0.00 T T 0.00 ===—"%
0 0.02 0.04 0.06 0.08 0.1 0.12 o 0.02 0.04 0.06 0.08 0.1 0.12
f, [mm/tooth] f, [mm/tooth]

Fig. 16. Surface roughneBaandRzin function of feed per tooth

Fig. 17. Surface roughneBsiandRzin function of feed per tooth) and depth of cu,
4. Conclusions

In the range of conducted research no influencdepth of cuta,, feed-per-toottf, and
tool wearVB:. on machined surface roughness was found. In treentool wear variability
range, the surface roughness parameters are cigarggidomly, independently of cutting
speedv.

Analysis of force and acceleration of vibration @unents revealed that dominant
spectrum frequencieso( and zfg have direct influence on the form of micro-unevess,
which is confirmed by the Power Density Functioalgsis.

The comparison of theoretic surface roughness peteamto their real values confirms the
well known fact (with reference to e.g. hardeneskls) that differences between theoretical
and real surface roughness values are increasitingf@ed decrease.

The milling process of tungsten carbide, in thegeanf cutting depths several times (3—4
fold) greater than critical depth of cut (corresgimig to minimum uncut chip thickness [8, 9])
enables obtaining surface roughness param&aismilar to those generated in milling on
ultraprecision machine tools [7]. It means thabrder to obtain relevant machined surface
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quality (mainly surface roughness) the applicat@nultraprecision machine tools is not
necessary. Comparable surface roughness parameters can obtain on less-rigid
conventional machine tools.
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