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Abstract 

Screw axis measurement methods obtain a precise identification of the physical reality of the industrial robots’ 

geometry. However, these methods are in a clear disadvantage compared to mathematical optimisation processes 

for kinematical parameters. That’s because mathematical processes obtain kinematical parameters which best 

reduce the robot errors, despite not necessarily representing the real geometry of the robot. This paper takes 

the next step at the identification of a robot’s movement from the identification of its real kinematical parameters 

for the later study of every articulation’s rotation. We then obtain a combination of real kinematic and dynamic 

parameters which describe the robot’s movement, improving its precision with a physical understanding 

of the errors. 
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1. Introduction 

The principal objective of robot calibration methods is to increase the robot accuracy [1]. 

This is translated into obtaining a series of parameters which connect the values                          

of the rotation angle of every robot’s axis to the spatial coordinates of the robot’s hand                 

(or the mechanism held in it). Determining these parameters can be undertaken with two 

different procedures. The first corresponds to (open or closed) loop methods, which are based 

on the measurement of predefined positions of the robot, for the later mathematical 

optimization of the parameters which better fit the measured positions. The second consists  

of the screw axis measurement methods, which seek to accurately determine the real positions 

of the robot’s articulation axes, to later obtain the kinematic parameters by means                            

of the algebraic relations existing between the axes [2]. 

Despite assuming that screw axis measurement methods should provide very precise 

results as these methods work with the physical reality of the robot, the highest accuracy is 

obtained by means of the loop methods. This is because the errors produced by the robot’s 

movements are not only due to the geometric errors of its articulations, but are necessary               

to consider more sources of error. The mathematically optimized parameters artificially 

include the influence of the other sources of error, therefore obtaining more precise results 

(despite not being real). 

Structural, kinematic and dynamic sources of error [3] can be differentiated from all                

the sources of error to be analyzed. Structural errors are difficult to predict, as they depend on 

variables such as the load, temperature, friction, or the robot’s wear. This paper studies                 

the other two sources of error: kinematic and dynamic. First, kinematic sources of error will 
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be studied by calculating the real kinematic parameters of the robot using circle point 

analysis. Then, dynamic error sources will be studied, analyzing the movement of each 

articulation independently. Using a Fourier series analysis, the eccentric movement equation 

is determined for each axis, depending on the displaced angle. 

This way, the combination of the kinematic parameters with the eccentric movement 

parameters provides both a real image of the robot’s behavior, and a function which connects 

with great precision the angle displacements of each articulation to the robot’s hand 

movement. 

This new calibration method presents two important advantages. The robot’s precision 

improves when compared to previously used methods, and, the influence of each source                   

of error over the robot’s movement can be independently studied. 

 
2. Kinematic model of the robot 

The mechanism used for the tests is a Kuka robot, model KR 5 sixx R650, whose 

dimensions are as shown in Fig. 1.  

 

 
Fig. 1. Robot dimensions. 

 

The first step in calibrating the robot is to define its kinematic model. Due to its simplicity 

and its generalized use, the four parameter methods defined by Denavit and Hartenberg have 

been used, plus the particular parameter introduced by Hayati and Mirmirani [4, 5]                        

to overcome the uncertainties produced in the case of almost parallel axes. The value of the 

said parameters depends on both the robot’s dimensions and the coordinate systems defined 

for every articulation. Fig. 2 shows the defined coordinate systems. According to the proposed 

method, the robot’s kinematic parameters are as shown in Table 1. 
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Fig. 2. Robot joint’s coordinate systems. 

 

According to the proposed method, the robot’s kinematic parameters are as shown in 

Table 1.  

 
Table 1. Nominal kinematic parameters. 

 

KM PARAM d (mm) θ (º) a (mm) α (º) β (º) 

Joint 1 335 0 75 90 0 

Joint 2 0 0 270 0 0 

Joint 3 0 90 90 90 0 

Joint 4 295 0 0 90 0 

Joint 5 0 180 0 90 0 

Joint 6 80 0 0 0 0 

 

Fig. 3 a) and b) shows the kinematic parameters corresponding to the two first pairs                 

of joints.  

  
 a) Joint 1     b) Joint 2 

 

Fig. 3. Kinematic parameters joint 1 and 2. 

 

Once the different reference frames for each joint are established, all the homogeneous 

transformation matrix that relates coordinates in the j frame with its corresponding 

coordinates in the j-1 frame can be calculated. Thus, a point rj expressed in the j frame can              

be expressed in the j-1 frame as rj-1, performing two turns and two lineal displacements 

according to the kinematic parameters of the joint. 
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Each of these four movements can be expressed by a homogeneous matrix. The product of 

these four homogeneous transformation matrix results in a homogeneous transformation 

matrix 
j-1
Aj known as the DH transformation matrix for the j and j-1 adjacent frames (1). 
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Matrix 
0
Tj specifies the location of the j frame with respect to the home frame.                        

It is the result of the product of successive transformation matrix 
j-1
Aj and is expressed as (2): 

 

 0
Tj = 

0
A1

1
A2…

j-1
Aj .  (2) 

 

The coordinates of a point expressed in the last frame of reference for any position and 

orientation of the mechanism can be obtained in the home frame (3) following                            

the methodology presented here. 
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However, the DH model leads to singularities when two consecutive joints are parallel             

or nearly parallel. The singularity occurs because small variations between the nominal and 

real model cause large variations in the DH parameters. This leads to numerical fluctuation 

when the parameters are identified. 

There have been different approaches to solve this problem. The model proposed                    

by Hayati and Mirmirani modifies the DH model by replacing the distance parameter dj with 

an angular parameter βj. However, this model is only effective for parallel or nearly parallel 

joints and not for generic representation. The actual model used in this work is a hybrid model 

with the DH model being used for joints in general and the Mirmirani Hayati model being 

used for parallel joints. This model will add parameter β2 (4) in the parallel or almost parallel 

joint angle corresponding to the axes Z2 and Z3. The inclusion of this parameter gives                  

the transformation matrix between adjacent joints (5). 
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3. Circle Point Method 

Circle Point Method [6, 7] is defined by its capacity to determine the spatial positions                

of rotation axis for any mechanism with rotatory articulations. This is achieved measuring             

the coordinates of a sensor positioned in the last articulation of the mechanism. This way,               

the measurements have to correspond to the sensor’s circular trajectories, rotating around 

every mechanism’s articulations. 

This method is based on the measurement of the position of a sensor rotating around each 

rotatory joint of the mechanism. Measured trajectories ideally describe a set of perfect circles. 

The joint axes will be the lines perpendicular to every circle by their center points. Once the 

position of every axis is calculated, the determination of the robot kinematic parameters can 

be obtained as the relationships of distances and angles between every two pair of consecutive 

axes.  

The first trajectory to measure corresponds to the rotation of the articulation following             

to the mechanism’s baseplate. From that point on, the following articulations are 

consecutively measured, following the kinematic chain order. It is fundamental that once 

measured one articulation, its position does not vary whilst measuring the rest                          

of the articulations so as not to interfere with the process. 

The four parameters used to fully specify a single joint are: the length of the joint (a),              

the angle of rotation (α), the size of the displacement of the joint (d) and the joint angle (θ). 

Each of these model parameters are defined as follows: 

 

Length articulation
ij

a

�

: The perpendicular distance between the adjacent axes i and j.            

This is the magnitude of vector mutually perpendicular joint. 

 

Rotation angle
ij

a

�

: The angle between adjacent axes i, j, and measured as the clockwise 

rotation from 
i
S

�

 to 
j
S

�

around vector 
ij

a

�

. The following definition ensures this restriction 

directional (6), (7): 
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Displacement dj: the displacement distance between two joints given as the distance 

between 
ij

a

�

 and jka

�

along the axis 
j
S

�

. 

 

Joint angle θj: This is the kinematic parameters defining the relationship between adjacent 

joints. The angle between adjacent joints ij and jk, and is measured as a clockwise rotation 

from vector 
ij

a

�

 to jka

�

around 
j
S

�

. The following definition ensures this restriction directional 

(8), (9): 
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A graphical description of preceding formulae is shown on Fig. 4. 
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Fig. 4. Description of a 6-degrees of freedom manipulator. 

 

In an ideal situation, the mechanism’s kinematic model allows the coordinates of the final 

effector in relation to the origin reference system of the mechanism to be known, depending 

on the articulation’s angle displacements. 

In reality, there are errors which provoke the existence of differences between                    

the theoretical positions of the mechanism’s rotation axis and its real position. In this situation 

the circle point method helps in finding the mechanism’s real geometry and correcting                    

its kinematic model with the measured positions of its rotation axis. 

This method requires a sensor, capable of moving, to be joined to every articulation, and                       

a coordinate measurement system, which provides the coordinates of the said sensor along its 

trajectory. The laser tracker (LT) has been widely used for this kind of measurement due to its 

accuracy and ease in following the displacement of optical reflectors adhered to                       

the mechanism’s articulations [8, 9]. These static reflectors present two important problems. 

On the one hand, the measuring precision depends on the laser’s angle of incidence on the 

reflector, this is why, as the reflector keeps on spinning, the measurements’ precision 

decreases: On the other, the aforementioned angle of incidence is limited, which makes                   

it impossible to measure more than one part of the articulation’s rotation, thus making                     

it necessary to measure parts by reorientating the articulation as the line of vision with the             

LT is lost. This introduces a measuring error factor due to the sensor’s repositioning 

uncertainty. 

The realized study used an active tracking sensor, designed by the API brand which 

assemblies an optical reflector, with two degrees of freedom, within a tracking mechanism, 

similar to the LT head. This mechanism searches the laser’s direction in the same way as the 

LT follows the reflector. This provides a permanent line of vision between the LT and                    

the reflector, which allows the measurements to be realized by a continuous process, and with 

an adequate angle of incidence on the reflector. 

 

4. Experimental setup 

The following elements were used to develop the calibration process: 
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KUKA Robot KR5 sixx. This is the mechanism to be calibrated. It is an small six axis 

robot with a reach of 650 mm and a 5 kg payload. The repeatability is ± 0.02 mm 

according to ISO 9283 but it’s accuracy is only 0,5 mm according to previous tests. 

 

API laser tracker 3. This is a high range measurement device with a range of 15 m and 

accuracy of ± 15 µm or 1.5 ppm. with ADM. We have placed the LT as near as possible       

to the robot and we are working on a range of 2,5 m from the LT, so our accuracy                      

is ± 3,75 µm. This measuring device is connected to a commercial software to capture the 

points data. 

Active target API. This is a spherical reflector (SMR) mounted on a 2 DOF 

mechanism. The reflector of the Active Target works similarly to any standard SMR.                 

The difference is that the Active Target features built-in technology motorisation                   

that automatically positions the reflector to face the tracker. Its optical accuracy is ± 3 µm. 

Fig. 5 shows the experimental setup described. 

 

 
 

Fig. 5. Experimental setup. 

 

A specific software has been developed to capture the data of the robot. Through an 

interface between the robot and an external computer, the angles of the robot at each 

predetermined position can be captured. These data, along with the Active Target positions 

obtained by the LT, are analysed to give the information required to calibrate the robot. 

To program the movements of the robot, an automatic generator has also been developed. 

Using variables such as the initial and final positions of each axis, the number of captured 

points and the number of runs, the program generates the robot program which commands the 

robot and controls the communication between the robot and the external data capture device. 

 

5. Tests and results 

Different tests were undertaken varying the points’ sample size, the range of movement       

of every articulation and their rotating speeds. Table 2 gathers the main characteristics of 

every test. 
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Table 2. Measured angles by test 

 

  Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 

Joint 1 Start 167º 167º 167º 80º 80º 80º 

End -167º -167º -167º -80º -80º -80º 

Range 334º 334º 334º 160º 160º 160º 

Points 10 60 30 30 30 30 

Angle step 33,40º 5,57º 11,13º 5,33º 5,33º 5,33º 

Joint 2 Start -5º -5º -5º -40º -40º -40º 

End -162º -162º -162º -120º -120º -120º 

Range 157º 157º 157º 80º 80º 80º 

Points 10 30 15 15 15 15 

Angle step 15,70º 5,23º 10,47º 5,33º 5,33º 5,33º 

Joint 3 Start 145º 145º 145º 80º 80º 80º 

End -114º -114º -114º -50º -50º -50º 

Range 259º 259º 259º 130º 130º 130º 

Points 10 50 25 25 25 25 

Angle step 25,90º 5,18º 10,36º 5,20º 5,20º 5,20º 

Joint 4 Start 177º 177º 177º 90º 90º 90º 

End -177º -177º -177º -90º -90º -90º 

Range 354º 354º 354º 180º 180º 180º 

Points 10 60 30 30 30 30 

Angle step 35,40º 5,90º 11,80º 6,00º 6,00º 6,00º 

Joint 5 Start 90º 90º 90º 45º 45º 45º 

End -90º -90º -90º -45º -45º -45º 

Range 180º 180º 180º 90º 90º 90º 

Points 10 30 15 15 15 15 

Angle step 18,00º 6,00º 12º 6,00º 6,00º 6,00º 

Joint 6 Start 178º 178º 178º 90º 90º 90º 

End -178º -178º -178º -90º -90º -90º 

Range 356º 356º 356º 180º 180º 180º 

Points 10 60 30 30 30 30 

Angle step 35,60º 5,93º 11,87º 6,00º 6,00º 6,00º 

% of max robot speed 3% 3% 3% 1% 3% 10% 

Measured points 120 580 290 290 290 290 

 

Once the sensor’s trajectories have been measured, the circle point method can be used. 

Each circular trajectory is independently dealt with, following this procedure: 

1. Calculate the best-fitting plane for every trajectory using the method of least 

squares. 

2. Project the captured points onto the plane. 

3. With the calculated points, obtain the best-fitting circumference (to said points), 

using least squares method. 

4. The circumference’s center will be a point in the rotation axis of the articulation. 

5. The rotation axis’ direction will be perpendicular to the plane which contains the 

circle. 

Once the spatial positions of the articulations’ rotation axes are obtained, linear algebra 

[7] can be used to calculate the distances and angles between consecutive axes, which 

correspond to the robot’s kinematic parameters. 

The parameters calculated following this method are as show in Table 3: 
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Table 3. Circle Point kinematic parameters 

 

 

Nom. Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Avg. 1-6 σ 1-6 Avg. 2-6 σ 2-6 

d1 (mm) 335 332,8307 335,2766 335,3591 335,1712 335,1850 335,2024 334,8375 0,9856 335,2389 0,0786 

d3 (mm) 0 -0,5332 -0,3389 -0,3440 -0,3455 -0,3495 -0,3506 -0,3769 0,0767 -0,3457 0,0047 

d4 (mm) 295 294,2804 295,2578 295,2325 295,2997 295,2996 295,2997 295,1116 0,4082 295,2779 0,0312 

d5 (mm) 0 0,1751 0,0290 0,0271 -0,0092 -0,0082 -0,0071 0,0345 0,0712 0,0063 0,0199 

θ1 (º) 0 0,1267 0,0778 0,0971 0,0745 0,0754 0,0766 0,0880 0,0208 0,0803 0,0095 

θ2 (º) 0 -0,1459 -0,0236 -0,0225 -0,0344 -0,0332 -0,0301 -0,0483 0,0481 -0,0288 0,0055 

θ3 (º) 90 90,1702 89,9429 89,9436 89,9552 89,9525 89,9498 89,9857 0,0905 89,9488 0,0054 

θ4 (º) 0 0,2016 0,2071 0,2095 0,2151 0,2150 0,2147 0,2105 0,0055 0,2123 0,0037 

θ5 (º) 180 180,0416 180,0626 180,0611 180,0604 180,0609 180,0605 180,0579 0,0080 180,0611 0,0009 

a1 (mm) 75 74,7028 74,8693 74,8659 74,8040 74,8200 74,8241 74,8144 0,0606 74,8367 0,0292 

a2 (mm) 270 271,6223 270,3284 270,3301 270,3621 270,3476 270,3344 270,5542 0,5234 270,3405 0,0142 

a3 (mm) 90 89,8065 90,2592 90,2418 90,2867 90,2930 90,2970 90,1974 0,1927 90,2756 0,0239 

a4 (mm) 0 -0,2582 -0,0371 -0,0378 -0,0262 -0,0316 -0,0263 -0,0695 0,0926 -0,0318 0,0056 

a5 (mm) 0 0,5201 0,0114 0,0145 -0,0103 -0,0106 -0,0065 0,0864 0,2127 -0,0003 0,0122 

α1 (º) 90 90,0208 90,0173 90,0161 90,0166 90,0178 90,0175 90,0177 0,0016 90,0171 0,0007 

α2 (º) 0 0,0063 0,0051 0,0057 0,0089 0,0096 0,0090 0,0074 0,0020 0,0077 0,0021 

α3 (º) 90 89,9701 89,9701 89,9698 89,9704 89,9703 89,9703 89,9702 0,0002 89,9702 0,0002 

α4 (º) 90 90,0366 90,0269 90,0263 90,0301 90,0304 90,0313 90,0303 0,0037 90,0290 0,0022 

α5 (º) 90 90,0298 90,0160 90,0153 90,0194 90,0199 90,0203 90,0201 0,0052 90,0182 0,0023 

β2 (º) 0 0,0533 0,0509 0,0531 0,0554 0,0565 0,0547 0,0540 0,0020 0,0541 0,0022 

 

Once the robot’s kinematic parameters for each test are obtained, it is necessary to define 

a criterion which allows us to check if we have succeeded in improving the robot’s precision, 

and to what extent. 

The chosen criterion is based on the calculation of the relative distances between every 

pair of points of the sample. The optimum value will be obtained from the calculation of the 

distances between the points measured using the LT. From each one of these distances                     

is subtracted the distances between those same points, referred to as the robot’s reference 

system, first calculated with the nominal parameters and then with the parameters obtained 

using the circle point method. By doing this we will obtain two vectors of Nx(N-1)/2 elements 

(N being the sample size), having in the first vector the differences between the points 

measured with the LT and those obtained with the nominal parameters. The second vector 

contains the differences between the points measured with the LT and those obtained with the 

circle point parameters. 

Analyzing the maximum and average values of the said vectors, it is determined which             

of the two sets of parameters provides the highest accuracy and to what extent. 

The results of the tests regarding the precision improvement obtained with the kinematic 

parameters calculated with regard to the nominal parameters are shown in Table 4. 

 
Table 4. Error comparison between nominal and Circle Point parameters. 

 

 
Nominal parameters Circle Point parameters 

 

 

Average error 
(mm) 

Maximum error 
(mm) 

Average 
error (mm) 

Maximum error 
(mm) Improvement 

Test 1 1,3444 4,8369 1,5587 4,0045 -13,75% 

Test 2 0,4619 1,7168 0,4031 1,4906 14,59% 

Test 3 0,4883 1,7035 0,4152 1,4652 17,61% 

Test 4 0,4363 1,5403 0,2901 1,3057 50,40% 

Test 5 0,4406 1,5653 0,2946 1,3151 49,56% 

Test 6 0,4399 1,5716 0,2907 1,3083 51,32% 
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It is verified that the first test must be discarded due to the reduced size of the sample. 

Regarding the rest of the tests, it can be perceived that the better defined the robot’s work area 

(Tests 4 to 6), the more precise are the optimizations. It is logical that it is more difficult                 

to obtain a general calibration than a local one. 

We can deduce that, always discarding the first test and given that the deviations are very 

low, important variations with regard to the obtained kinematic parameters cannot                      

be perceived. This is why, so long as a sample with enough points can be found, the influence 

of the robot’s velocity or the influence due to the increase in the sample size do not pose 

important variations for the calculated kinematic parameters. This situation would be different 

in the event of using low angular paths, a case in which it would be possible to obtain 

unreliable results. 

It can be verified that the backlash error is very high in several articulations, 

fundamentally in the four reaching values of 250 µm, which makes it impossible to reach the 

robot’s nominal values of repeatability of ± 20µm. This highly conditions the method’s 

accuracy given that it is not possible to find parameters which eliminate this error, as it 

depends on every movement of the robot’s axes directions, and it is not easy to systemize the 

way in which the robot is going to move. 

 

6. Eccentricity movement analysis 

The correction of the kinematic parameters of the robot is not enough to improve the robot 

accuracy because it is a static correction and the real errors depend also on the position                  

of every joint. 

The rotating body shown in Fig. 6 is considered. Ideally, this body rotates over its rotation 

axis with no error. However, in reality the rotation axis rotates over an axis in the frame of the 

reference coordinates with radial errors δX and δY, an axial error δZ, and sway errors of the 

axis, called εX and εY [10]. These errors can also depend on the rotation angle θZ. For a point 

in the frame of the axis, coordinates Xn Yn Zn, its position error can be calculated, depending 

on the rotation’s eccentricity errors, as the product of the error matrixes corresponding to each 

one of the considered errors. 

 
Fig. 6. Produced errors in the movement of rotation axis. 
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As the other movement errors are small, the homogeneous transformation matrix 

multiplication order is not critical. The sequenced multiplication of the homogeneous 

transformation matrixes, which provides the resulting error matrix RTerr, would therefore have 

the expression (10). 
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where: 

MTn is the translation matrix of a quantity “n” along the axis “n”, for n=x, y, or z 

MGθn is the rotation matrix for an angle around the axis “n”, for n=x, y, or z. 

 

The general result after expanding the matrix in the previous equation would be as (11). 
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The circle point method provides very important information about the robot’s geometry, 

as it accurately calculates the positions of the rotation axis for each one of its six articulations. 

This provides an important improvement in its accuracy as it allows us to adjust its 

parameters to the robot’s physical reality. 

In order to obtain a correct calibration of the robot, we need to know the errors the robot 

makes when rotating around each one of its axes. The circle point method considers the ideal 

situation in which every axis rotation is perfect and the reflector describes a circle around its 

rotation axis; this means the reflector acts as an eccentricity. 

In reality, any rotation movement around the Z axis will contain five errors, three position 

errors for each axis, dx, dy, dz and two rotation errors, εx, εy. 

In order to understand and systemize these errors it is necessary to confer on them                     

a particular expression for analysis. 

These errors have been proved to follow a periodic expression with a period of 2π radians 

so they correspond to Fourier series. Several calculations have been made to find out                         

the number of terms necessary from the Fourier series and the improvement obtained from  

the first term to the following ones is not significant, so we can formulate the rotation errors 

as shown on (12). 
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sin . (12) 

The expressions of the errors corresponding to each articulation are as seen on (13)                   

to (17). 
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Once the error expressions have been defined, it is necessary to establish an optimization 

criterion so as to find the best-fitting parameters for the error expressions. This study utilizes 

non-linear optimization with least squares by means of the Levenberg–Marquardt algorithm 

[11]. This algorithm has shown good results in robot and articulated arm coordinate 

measuring machines calibration techniques [12]. 

We introduce to this optimization a vector “X” with the parameters to modify and                       

a criterion to check if the modified parameters are better or worse than the originals. 

The vector “X” is composed of all the error parameters described in Equations 4 to 8 for 

each axis. We have three error parameters (D, A and φ) for every error, plus five errors per 

joint (δx, δy, δz, εx and εy) plus six joints so we need 3x5x6=90 error parameters.                      

The notation Ddx1 means parameter D for error δx in axis 1. 

 

X=( Ddx1, Ddy1, Ddz1, Dεx1, Dεy1, Adx1, Ady1, Adz1, Aεx1, Aεy1, φdx1, φdy2, φdz1, 

φεx1, φεy1, …, Ddx6, Ddy6, Ddz6, Dεx6, Dεy6, Adx6, Ady6, Adz6, Aεx6, Aεy6, φdx6, 

φdy6, φdz6, φεx6, φεy6) 

The chosen improvement criterion corresponds to the difference in the distances between 

the points captured with the LT, considered as the goal distances, and the distances calculated 

based on the robot’s kinematic parameters obtained with the circle point method and the error 

matrixes calculated from the parameters “X”. The optimization procedure uses a Matlab 

function which solves nonlinear least-squares problems. This function automatically varies 

the parameter values, included in the vector “X”, seeking the least possible difference 

between the two matrixes. The optimisation criterion formulation can be represented as (18). 
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CP
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where: 

F is the function to be minimized. 

n is the number of captured points 
LT

iju

�

 is the modulus of vector from point i to point j in coordinates measured by the Laser 

Tracker. (LT) or nominal from Circle Point method (CP). 
CP

iju

�

 is the modulus of vector from point i to point j according to kinematic parameters 

calculated with Circle Point method and the rotation error parameters.  

 

The improvement criterion used has the following disadvantage: it can provoke                          

a displacement of the cloud of captured points when varying its parameters. To avoid these 

displacements, a series of fixed points is included in the calculation; these fixed points are not 

affected by the error matrixes. The chosen fixed points are the centers of the circles 1, 3, and 5 

calculated with the circle point method. These points are added to the list of captured points 

by the LT in its three first positions and also, and in the same way, to the list of points we 

calculated in the robot’s reference system. Three points are required because it is                         

the minimum quantity in order to fix the others; if we use only one, the others can rotate 

around it with two degrees of freedom; and if two are used, the cloud of points can rotate 

around the line which connects the two points without varying the distance from them. 

 

7. Optimisation results 

The optimisation has been made only for test 2 because it’s the most general situation, 

with the largest angular range obtained and the highest amount of data captured. 

The obtained parameters are as shown in tables 5 to 7: 
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Table 5. Eccentricity displacement parameters 

 

 
Ddx (mm) Ddy (mm) Ddz (mm) Dεx (mm) Dεy (mm) 

Joint 1 -0,00894432 -0,00044766 -0,09097568 -2,8886E-05 9,9299E-05 

Joint 2 0,00225915 -0,05434195 -0,00171799 -0,00027847 0,00043006 

Joint 3 0,16801637 0,00185002 -0,03888246 -0,00021782 -0,0004381 

Joint 4 0,00982289 0,03792663 0,00545861 9,5836E-05 -0,00014458 

Joint 5 -0,00465192 0,00250222 0,31343338 0,00324521 -0,00115391 

Joint 6 -0,03546433 -0,02386418 -0,13111638 0,00084781 0,00031983 

 
Table 6. Eccentricity amplitude parameters 

 

 
Adx (mm) Ady (mm) Adz (mm) Aεx (mm) Aεy (mm) 

Joint 1 -0,09438893 -0,010266 -0,1214897 -0,0056238 0,0062345 

Joint 2 -0,01861644 -0,11436569 -0,00977474 0,02706514 -0,02377566 

Joint 3 0,14699369 -0,02192545 -0,00973498 0,00430838 0,02144104 

Joint 4 0,24364125 -0,00971577 -0,02075261 -0,01180938 0,00267801 

Joint 5 -0,1641385 -0,02075231 0,0408056 -0,00131996 -0,14413296 

Joint 6 0,00374365 0,04081512 0,02455266 0,01901011 0,04791811 

 
Table 7. Eccentricity phase difference parameters 

 

 

φdx (rad) φdy (rad) φdz (rad) φεx (rad) φεy (rad) 

Joint 1 3,4892E-05 5,8111E-06 0 0 2,3934E-05 

Joint 2 0,00017001 2,8559E-05 2,3993E-05 1,7867E-05 1,827E-07 

Joint 3 0 0,00026735 0 1,535E-07 2,1815E-05 

Joint 4 0 0 0 1,729E-07 1,6947E-05 

Joint 5 3,3104E-05 0 5,7802E-05 0 0,00031557 

Joint 6 0,00015193 3,6924E-05 1,49E-07 2,7434E-05 0 

 

The obtained quality parameters with this optimization are as follows: 

 

-Average error of the distances between the points: 0.1095735 µm 

-Maximum error of the distances between the points: 0.8673400 µm 

 

8. Conclusions 

The non-linear optimization results can be considered as very satisfying, as they reduce 

the average error made with the circle point method from 0.4031 mm to 0.1096 mm, which 

means to a quarter. 

In addition, the obtained parameters are, in total, very low, which represents movement 

errors compatible with reality. 

As expected, the highest parameters are found in the articulations which present greater 

backlash, as the optimization tries to locate the best-fitting trajectory for those points, which 

have very different coordinates for the same robot position. 

Circle point analysis offers an interesting point of view of robot calibration, but it lacks 

accuracy. That is because circle point analysis only shows positioning errors of robot axes 
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and, as seen in this paper, rotatory errors can be a higher source of errors than kinematic 

parameters. 

Despite this, we cannot underestimate the benefits of circle point as a first step in the 

calibration of a robot’s arms. Circle point gives us the real position of the robot’s joints 

which, in conjunction with the study of the dynamic behavior of them, offers full knowledge 

of the robot’s errors under defined conditions of the temperature and the load of the robot’s 

arm. 

Usual calibration procedures are based on the determination of the robot’s kinematic 

parameters from a set of measures and a mathematical optimization of the parameters. These 

procedures give better accuracy than circle point but calculated kinematic parameters are not 

real, they are just a set of numerical values which best fit with the robot’s error. 

Circle Point method improved with eccentricity errors can be a more powerful method to 

calibrate rotatory mechanisms. In this paper a first order eccentricity formulation has been 

considered but including the study of further harmonics the precision of the calibration can be 

highly increased. 
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