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Abstract 

Power electronic circuits (PECs) are prone to various failures, whose classification is of paramount importance. 

This paper presents a data-driven based fault diagnosis technique, which employs a support vector data 

description (SVDD) method to perform fault classification of PECs. In the presented method, fault signals (e.g. 

currents, voltages, etc.) are collected from accessible nodes of circuits, and then signal processing techniques
(e.g. Fourier analysis, wavelet transform, etc.) are adopted to extract feature samples, which are subsequently

used to perform offline machine learning. Finally, the SVDD classifier is used to implement fault classification

task. However, in some cases, the conventional SVDD cannot achieve good classification performance, because

this classifier may generate some so-called refusal areas (RAs), and in our design these RAs are resolved with 

the one-against-one support vector machine (SVM) classifier. The obtained experiment results from simulated 

and actual circuits demonstrate that the improved SVDD has a classification performance close to the 
conventional one-against-one SVM, and can be applied to fault classification of PECs in practice.  
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1. Introduction 
 

Power electronic circuits (PECs) can be easily found in industrial, military or civil 

applications, e.g. DC-AC inverters in motor drive circuits [1‒3], rectifiers in AC-DC energy 
conversion systems [4], DC-DC converters in various structured switched-mode-powers 
(SMPs) [5‒7], etc. In their applications, PECs are failure-prone,  because they frequently 
experience current surges, continuous switching operations and high temperature stresses. 

Faulty PECs can result in serious aftermath, leading to money loss or even casualties. Hence, 
fault detection and localization of PECs are very important, and this can assure the reliability 
and availability of overall circuit systems. Also, fault diagnosis of PECs can supply necessary 

information for fault tolerant or even reconfiguration of the circuit systems [8].  
Generally, fault diagnosis of a PEC can include two parts: fault detection and fault 

localization. A fault detection technique is used to detect whether the circuit is faulty, and 
fault localization can find the faulty components or sub-systems of the overall power 

electronic circuit system. In essence, fault diagnosis can be summarized to the problem of 
fault classification. The methods of diagnosing PECs can be grouped in two families. The first 
one is based on hardware design [6, 9], and this design will need the circuit mathematical 

model analysis. This method can be very fast, but seems to be inflexible when the circuit 
topology or the parameters of its component are changed. The other family is mainly based on 

the data and algorithm analysis, and this method does not need the explicit model of the 
circuit and is also called the data-driven method. The data-driven based fault diagnosis 
method is flexible in its algorithm design, which can be modified conveniently while the 
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corresponding hardware remains unchanged. The data-driven based fault diagnosis method 

for PECs can be roughly divided into three steps. The first step is to collect original signals 
from circuits, and these original signals can be currents, voltages, or other information. 
Generally, these signals from a PEC contain noise disturbance, because of complicated 

working conditions. Therefore, in the second step, signal processing techniques are used to 
eliminate the noise disturbance, and then to extract the fault features. In the third step, 

algorithms are designed to implement the fault classification task. Design of the algorithms in 
this step is quite important, because it can directly affect the accuracy of fault classification.  

In the last decades, some scientists have focused on designing fault diagnosis algorithms of 

PECs, and most of these algorithms are based on machine learning and pattern recognition 
techniques, which have been proven to be effective in the fault diagnosis domain of PECs [1]. 

Some scientists use the fuzzy inference technique, which seems to be effective in some 
industrial applications [10, 11]. In this method, a proper selection of memberships in the fuzzy 
algorithm is a difficult task. Neural classifiers are also applied to the fault diagnosis of PECs, 

because of its nonlinear mapping capability. For example, in [12], back-propagation neural 
network (BPNN) classifiers are used to diagnose switch faults of a three-phase inverter, and 

other applications of neural network classifiers to diagnose PECs can also be found in [13‒15] 
and [16]. These applications demonstrate that the neural network classifiers are effective in 
fault classification of PECs.  

The support vector machine (SVM) is another type of fault classifier, which has some good 
characteristics in pattern classification and regression in many applications [17]. The basic 

SVM implements binary classification and can be applied to fault detection of PECs. For 
example, in [18], the authors use the wavelet and waveform analysis to extract fault features 
from simulation data of an inverter, and finally the binary SVM is adopted to detect whether 

the inverter is faulty. A similar example can be found in [19], and in this case the Concordia 
transform is performed, based on three-phase currents of an inverter, to extract 2-dimensional 

fault features which are used to train the binary SVM. In some cases, the diagnosis technique 
needs to discern and locate the faulty components. Several multi-class SVM classifiers can be 

used for fault localization of PECs. One is called the one-against-rest SVM, and the other one 
‒ the one-against-one SVM. For example, in [4] and [20], the authors construct the one-
against-rest SVM to perform fault classification of a three-phase rectifier. In [21], the one-

against-rest SVM with Huffman tree structure is constructed to implement localization of a 
faulty switch in the simulated inverter.  

This paper presents a fault classifier based on the support vector data description (SVDD), 
which, according to our knowledge, is seldom used in fault diagnosis of power electronic 
circuits. In this presentation, the SVDD is viewed as an alternative to the conventional multi-

class SVM for fault diagnosis of PECs. In many cases, the SVDD cannot perform the fault 
diagnosis task well, because a feature sample probably falls into a so-called refusal area (RA), 

formed by two or more SVDD classifiers. Existing of RAs can reduce diagnosis accuracy. In 
our design, we consider to resolve the RAs by introducing the one-against-one SVM. This 
design can significantly improve the SVDD classifier performance. According to our 

investigations, this novel classifier is very fast, and it can achieve a comparable classification 
performance with the one-against-one SVM. Also, according to the results of experiments, the 

presented method outperforms the one-against-rest SVM and the designed three-layered 
BPNN classifier, in terms of training and classification performance.  

The rest of the paper is arranged as follows. Section 2 introduces the basic principles of 

SVDD and RAs in detail. Also, in this section, the overall flowchart of the proposed approach 
is discussed. In Section 3, two PECs, including a simulated rectifier and an actual inverter, are 

described. In this section, open-faults for the switches are used, because these faults are 
general and typical in fault diagnosis applications of PECs. Feature extraction algorithms for 
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experiments are also introduced in detail in this section. Results and their discussion are given 

at the end of this section. Finally, Section 4 presents the conclusions.  
 

2. Method presentation 

 

2.1. Basic theory for the SVDD 

 
The presented fault diagnosis system for PECs employs the SVDD technique, which is 

regarded as the key pattern classification method in our design. The SVDD classifier is to 

map a set of samples, assumed to be {xi} (i = 1, 2, ..., E, where E is the number of data 
samples), to a high-dimensional space, in which a spherically shaped boundary is formed to 

contain these data samples [22, 23]. The basic conception for the SVDD is shown in Fig. 1.  
 

 

Fig. 1. The basic conception for the SVDD. 
 

Assume the radius and center of this sphere to be R and a, respectively; the following error 
function needs to be minimized:  
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By introducing Lagrange multipliers and partial derivatives, we can solve this quadratic 
optimization problem and obtain the sphere center [22]:  
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The SVDD can be used to classify faults of PECs. For N faults, N SVDD classifiers need 
to be established. The lth fault class (l = 1, 2, ..., N) corresponds to the lth SVDD classifier. 

To test an unknown sample z , whose form is ( )Φ z  in the high-dimensional space, the 
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distances to each centre of the SVDD classifiers have to be computed. Assume
l
R , 

l
a  to be the 

radius and centre of the lth SVDD, respectively. Then, the distance between ( )Φ z  and 
l
a  

becomes:  

 2( ( ) ) , 1,2,...,
l l

dist l N= Φ − =z a .          (5) 
 

Generally, the following two cases are considered for the lth SVDD classifier:  

Case I : If 
l l

dist R≤ , the sample ( )Φ z  falls into or on the sphere. In this case, the sample is 

considered to belong to the lth fault class.  

Case II: Otherwise, the sample ( )Φ z  falls outside of the sphere. This case shows this 

sample does not belong to the lth class. In other words, it belongs to another class, so it can 

be rejected by the diagnosis system.  
 

2.2. RA of the SVDD classifiers  

 

In applications of fault classification using SVDD classifiers, a sample to be tested will 

probably fall into a so called refusal area (RA), as shown in Fig. 2.  
 

 

Fig. 2. One RA formed by two classes. 

 
RA is a public area, which can be formed by two or more SVDD classifiers. In Fig. 2, a 

RA is generated  by two SVDD classifiers, class A (indicated with “*”) and class B (indicated 

with “△”). In this paper, for simplicity, we discuss the RA in the original data space, not in 

the high-dimensional space. If a sample (assumed to be a “△”, shown in Fig. 2) falls into the 

RA, this means the sample can either be assigned to class A or be assigned to class B. 
Sometimes, the sample to be tested falls outside of all the SVDD classifiers. In such a case, 

the sample is considered to fall into an unknown area, which is called the special RA in this 
paper.  

The existence of RAs can degrade the classification performance of conventional SVDD, 
resulting in its application to the PEC fault diagnosis being impractical. Hence, we consider 
performing classification in this area by using an SVM classifier. Similarly to the SVDD 

classifier, the SVM implements the classification task via the kernel function in the high-
dimensional space, in which a linear boundary can be formed [24, 25]. A basic binary SVM 

(BSVM) classifier can perform binary classification, and for a multi-class problem an 
ensemble of BSVM classifiers can be employed [26]. SVM classifiers, including the one-
against-rest and one-against-one structures [27‒29], have been applied to electronic circuit 

fault diagnosis. For N faults, the one-against-rest SVM needs N BSVM classifiers, whereas 
for the one-against-one SVM N(N-1)/2 BSVM classifiers need to be considered. In this paper, 

the one-against-one SVM is adopted as the auxiliary classifier to classify samples falling into 
the RA formed by SVDD classifiers, because this classifier has a good performance in 

electronic circuit fault diagnosis [30].  
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2.3. SVDD classifier improved by the SVM 

 

In testing an unknown sample z, the SVDD method is the master classifier and the one-
against-one SVM can be viewed as an auxiliary classifier for improvement. For N fault 

classes, the decision steps for the improved SVDD classifier are showcased in Fig. 3. Initially, 
distances between sample z and N SVDD classifiers need to be calculated, and sample z 

should be assigned to the class, which is corresponding to the smallest distance. When z falls 
into the RA, the one-against-one SVM classifier is activated.  

 

 

Fig. 3. The presented SVDD method improved by the SVM classifier. 

 

Figure 3 shows the process of fault class assignment using the one-against-one SVM, and 

this process is enclosed within the dotted-line area. In this case, not all the BSVM classifiers 
are required to participate in the computation. Only those BSVM classifiers, whose 

corresponding fault classes form the RA, are necessary in this calculation. Assume the 

number of involved fault classes to be p (p≥2), then the number of expected BSVM 

classifiers should be p(p−1)/2. The final fault class assignment is also implemented according 
to the voting strategy among these p classes. Once z falls into the special RA, the complete 

calculation of the one-against-one SVM is needed. In this case, the number of BSVM 

classifiers can reach N(N−1)/2.  
With an increase of N, the computation cost for the one-against-one SVM will increase 

drastically. By contrast, an increase of the computation cost for the SVDD approach is not 
significant. By using this new classifier, our diagnosis system can achieve a good 
classification performance, which can be close to that of the one-against-one SVM. 

Meanwhile, the computation cost can be apparently reduced as well. Also, compared with 
some conventional fault classifiers (such as the one-against-rest SVM, neural classifier), the 

presented method has a very high training speed. The following experiments vindicate 
effectiveness of this method.  
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3. The experiments 

 

3.1. The first simulated circuit 

 

3.1.1. Simulation setup 

 

The first power electronic circuit is a three-phase full-bridge rectifier with six controlled 
thyristors, shown in Fig. 4. This circuit is modeled and simulated with the Matlab ‒ Simulink 

software. In this simulation, Rload is set to be 100 Ω; Lload is 1.5 H; the nominal phase 

frequency and RMS (Root-Mean-Square) voltage for the input source (
U

u , 
V
u  and 

W
u ) are 

50 Hz and 220 V, respectively; the firing angles for the thyristors range from  0°to 90°with 

which this circuit can act as a rectifier. The terminal voltage ud is selected as the accessible 

signal, which is sampled 50 times and each time the firing angle is varied evenly. In the 
simulation setup, the sampling frequency for the data is set to be 20 KHz and for each sample 
1200 data dots are sampled. Hence, each sample generation consumes 60 milliseconds. The 

sampled 1200 dots contain several waveform periods and this can help to extract features in 
the frequency domain.  

 

 

Fig. 4. The simulated three-phase full-bridge rectifier. 

 

In this circuit, two cases are considered. In the first case, only five fault classes are used. In 
the other case, 22 classes are considered. The two cases are mainly used to investigate the 

performance of classifiers under different numbers of faults. Open-circuit faults for the 
thyristors are investigated. Fault sets for the first and second case are listed in Table 1 and 

Table 2, respectively. {Tf, Tg} (f, g = 1, 2, 3, 4, 5, 6, and f≠g) means two thyristors Tf and 

Tg are faulty simultaneously. In this research, f0, indicating a healthy circuit, is regarded as a 

special fault class.  
 

Table 1. Fault classes for the first circuit (1st case). 

FAULT CODE DESCRIPTION 

f0 The circuit is healthy 

f1 T1 or T2 or T3 or T4 or T5 or T6 is faulty 

f2 {T1, T4} or {T3, T6} or {T2, T5} are faulty 

f3 
{T1, T3} or {T1, T5} or {T3, T5} 

or {T2, T4} or {T2, T6} or {T4, T6} are faulty 

f4 
{T1, T2} or {T2, T3} or {T3, T4} 

or {T4, T5} or {T5, T6} or {T6, T1} are faulty 
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Table 2. Fault classes for the first circuit (2nd case). 

FAULT CODE DESCRIPTION  FAULT CODE DESCRIPTION  

f0 The circuit is healthy f11 {T1, T5} are faulty 

f1 T1 is faulty f12 {T2, T4} are faulty 

f2 T2 is faulty f13 {T2, T6} are faulty 

f3 T3 is faulty f14 {T3, T5} are faulty 

f4 T4 is faulty f15 {T4, T6} are faulty 

f5 T5 is faulty f16 {T1, T2} are faulty 

f6 T6 is faulty f17 {T2, T3} are faulty 

f7 {T1, T4} are faulty f18 {T3, T4} are faulty 

f8 {T3, T6} are faulty f19 {T4, T5} are faulty 

f9 {T2, T5} are faulty f20 {T5, T6} are faulty 

f10 {T1, T3} are faulty f21 {T6, T1} are faulty 

 

3.1.2. Feature extraction for the rectifier 

 

The waveforms of ud can be different even for the same fault class, because the firing angle 

can be various. Hence, the time domain analysis for the ud is difficult. In this paper, we 
analyze the waveforms of ud in the frequency domain, because different faults can result in 

fluctuation of different harmonic components. The Fast Fourier Transform (FFT) analysis is 
applied to ud waveforms. For the FFT analysis, assume Hq and Ah to be the spectrum 
amplitude of the q-th harmonic component (q = 0, 1, 2, 3 …) and the phase angle of hth 

harmonic component (h = 1, 2, 3 …), respectively. Here, H0 refers to the DC component of 
the signal, H1 is the fundamental harmonic component, H2 is the second harmonic component, 

and so on. The FFT analysis can generate numerous features. However, not all features can 
contribute to the final fault classification. Hence, the feature selection is an important task. In 
this investigation, we attempt to use a combination of some features (from Hq and Ah, q = 0, 1, 

2, 3 …, h = 1, 2, 3 …), and then use the one-against-one SVM classifier to testify 
effectiveness of this combination. Once a good testing accuracy of this SVM classifier is 

achieved for the testing data, this combination is considered to be effective. In fact, this 
technique belongs to a wrapper based feature selection method [31].  

In our feature selection experiment, first a combination of spectrum amplitude features is 

considered, because these features are frequently used in fault diagnosis applications. The 
combination set of features is initialized with [H0, H1], and then the SVM classifier is used to 

testify effectiveness of this combination. If the classification accuracy of the SVM is not ideal, 
the combination set of features is changed by adding another feature to it, and the testing 

procedure is restarted, until a good classifier performance is achieved. In order to reduce the 
feature selection time, in our experiment q and h are limited to not exceed 6. After the feature 
selection, a 3-dimensional feature [H0, H1, H2] is found to be enough for distinguishing 5 fault 

classes. Classification of 22 fault classes will need a 13-dimensional feature [cosA1, cosA2, 
cosA3, cosA4, cosA5, cosA6, H0, H1, H2, H3, H4, H5, H6], with which a good classification 

performance of the classifiers can be achieved.  
 

3.1.3. Classifier training and results  

 

Five pattern classifiers are used in this paper for the performance comparison. The first one 

is the one-against-rest SVM, which adopts the Winner-Takes-All (WTA) strategy [32]. The 
second is the one-against-one SVM, which employs the voting strategy in the decision 
process. The conventional SVDD is the third classifier. Our presented improved SVDD 

(indicated with “iSVDD”) is the fourth classifier. A three-layered BPNN is the final designed 
classifier, because it is widely used in the domain of circuit fault diagnosis.  
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In the first case for diagnosing 5 classes, five SVDD classifiers are established. Also, five 

and ten BSVM classifiers for the one-against-rest and one-against-one SVM are constructed, 
respectively. Thirteen samples for each fault class are selected as the training data, and the 
other thirty-seven samples are for the purpose of testing. All the samples are normalized to 

have zero-mean-values and unity variance. In the SVM and SVDD training process, the 
penalty parameter C is set to be 100, and the kernel function is selected as the radial-basis-

function (RBF) 
2 2|| || /( , ) ,x y

K x y e
σ− −

=  where σ is the kernel function parameter. The kernel 

RBF is a commonly used function and adoption of this function leads to good classification 

results. Different kernel parameters will result in different results, and in this experiment good 
results can be achieved when σ is set to 1. In our experiment, we consider using the standard 
SVM because this classifier has a good generalization performance. In training the neural 

classifier, the Levenberg-Marquardt algorithm is used. The number of hidden layer neurons is 
4, and the activation function from the input layer to the hidden layer is tansig. The BPNN 

training is implemented with the newff function in the Matlab 2010 software, and the NN uses 
sim function for testing. Different trainings for the BPNN will probably result in different 
performances. In our example, the BPNN is trained for three times, and the best performance 

is selected as the final result of neural classifier. The final and detailed classification results 
for five classifiers are listed in Table 3.  

 
Table 3. The classification results of 5 faults for the rectifier (1st case). 

CLASSIFIER 
ACCURACY 

(×100%) 
TESTING TIME  

(S) 
TRAINING TIME  

(S) 
NUMBER OF SVs 

One-against-rest SVM 1.000 0.722 0.414 91 

One-against-one SVM 1.000 1.440 0.354 81 

BPNN 1.000 3.933 0.334 − 

SVDD 0.861 0.597 0.073 22 

iSVDD 1.000 0.825 0.073 ＞22 

 

In this table, the testing accuracy, the time for testing and training, as well as the number of 
consumed support vectors (SVs) in performing the calculation of SVM and SVDD, are 
shown. In Table 3, the conventional SVDD method can classify 86.1% of the testing samples. 

The other two SVM classifiers demonstrate 100% classification accuracy for the testing 
samples.  The iSVDD can classify all the samples rightly, illustrating an ideal classification 

performance after improvement. In terms of testing time, the one-against-one SVM consumes 
1.44 seconds to perform the classification task, whereas the iSVDD consumes less time 

(0.825 seconds).  
In diagnosing 22 fault classes, the number of training samples for each class is increased to 

20, with which a very high classification accuracy can be achieved. In this experiment, the 

kernel parameter σ is equal to 2 for several support vector classifiers. The number of BPNN 
hidden layer neurons is 13, and in this example the BPNN cannot converge to the goal error. 

Hence, the result for the BPNN is excluded from this example. The final and detailed results 
of diagnosing the rectifier in the second case are listed in Table 4.  

 
Table 4. The classification results of 22 faults for the rectifier (2nd case). 

CLASSIFIER 
ACCURACY 

(×100%) 
TESTING TIME  

(S) 
TRAINING TIME  

(S) 
NUMBER OF SVs 

One-against-rest SVM 0.991 22.159 3.173 5913 

One-against-one SVM 0.991 132.050 6.145 9385 

SVDD 0.538 10.711 0.317 358 

iSVDD 0.991 75.982 0.323 ＞358 
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In this case, the SVDD can classify only 53.8% samples in the testing phase, and the other 

three classifiers can achieve a very high classification accuracy of 99%. The one-against-one 
SVM classifier needs about 132 seconds to classify 22 fault classes (20 samples for each 
class) and the iSVDD also consumes a lot of time (about 76 seconds) to perform classification, 

because, in this case, the classifier improvement needs to calculate many extra BSVM 
classifiers.  

Also in this case, we investigate the impact of kernel RGF parameter σ on the classification 
performance of support vector classifiers. With this, the comparison of classification accuracy 
for 4 classifiers in testing is presented in Fig. 5. In this experiment, σ is set to be 1, 2, 4, 8, 16, 

32 and 64 in order. In this figure, the logarithmic coordinate (
10

logσ ) is used for convenience 

of observation.  
 

 

Fig. 5. The comparison of classification accuracy for 4 classifiers regarding σ (the rectifier). 

 

From Fig. 5, we can see that the SVDD classifier displays a poor performance with various 
kernel parameters. Although the iSVDD performance curve has a slight fluctuation in this 

figure when σ is larger than 4, its overall classification accuracy is still above 90%. The 
classification accuracy for two SVM classifiers is almost perfect.  

 

3.2. The second actual circuit 

 

3.2.1. Experiment platform description 

 

The second PEC, shown in Fig. 6, is an actual three-phase inverter in a motor-drive.  

The AC motor used in our experiment is a three-phase (phase A, phase B, and phase C), 5-
pair poles, 50 W brushless DC motor, whose shaft is coupled to an electric fan as the load 

with rated speed of ~ 800 rpm. The power switches used in the drive circuit are MOSFETs, 
driven with the square wave pulse width modulation (PWM), and the input DC voltage Vdc is 
+48 V. For simplicity, we consider a single switch fault for the drive circuit. Altogether 7 

patterns need to be classified, and here the healthy condition of the circuit is regarded as a 
special fault pattern. In this example, the fault code for a faulty switch Ti is fi (i = 0, 1, 2, 3, 4, 

5 and 6), where f0 denotes a healthy circuit.  
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Fig. 6. The inverter under investigation. 
 

Three-phase currents ( , ,
a b c
i i i ) need to be collected synchronously. We have designed an 

I/V interface circuit to change the currents into voltages, which are sampled by a 12-bit A/D 
unit and sent to the computer. The basic platform is shown in Fig. 7.  

 

 

Fig. 7. The experiment platform for the second PEC. 

 

3.2.2. Feature extraction for the inverter 

 

By changing the speed of load from 700 rpm to 900 rpm, we collect the three-phase 
currents. For each fault class, forty actual data samples are collected. For each data sample, 

the A/D unit consumes about 8.32 milliseconds to implement the data acquisition operation.  
In order to reduce the noise effect, the wavelet transform (WT) is performed to process 

three-phase currents. The wavelet mother function is hard to select, and we find a good one 
through the experiment results. Finally, Haar wavelet is adopted as the mother function to 

decompose the current signals into coarse coefficients ( , ,

w w w

a b c
i i i ) and detailed coefficients at 
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level 3. The coarse coefficients can describe the waveform outline, which is enough to 

distinguish different open-switch faults, and thus are considered to be informative and useful.  
The detailed coefficients are not used in our design. In order to reduce the impact of load 

on our design, the wavelet coefficients are furthermore normalized:  
 

                                              

ˆ / max(abs( ))

ˆ / max(abs( ))
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where abs(.) and max(.) are functions to obtain, respectively, the absolute and maximum 
values from the corresponding wavelet coefficients.  

For an AC motor system with symmetrical structure, the Concordia transform of phase 

current is used to calculate the current trajectory ( ˆ ˆ,i i
α β ) in the αβ-frame:  
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Moreover, a two-dimensional feature [C
α

,C
β
] is extracted from the trajectory:  
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where 2 2

1 1 1

1 1 1ˆ ˆ ˆ ˆ( ( ) ( )) ( ( ) ( ))
M M M

k k k

r i k i k i k i k
M M M

α α β β

= = =

= − + −∑ ∑ ∑  is regarded as the average radius size 

from the centroid to the trajectory boundary; M is the number of data dots forming the 
trajectory after WT (in this investigation M = 724), with which a complete trajectory can be 
formed; k is the index for the sampled data (k = 1, 2, 3, …, M).  

Two features can roughly describe the centroid of trajectory with respect to its radius.  
 

3.2.3. The results 

 

The feature extraction technique is quite effective. Fig. 8 shows the impact of WT on the 

waveforms of currents during open fault at T1. In this figure, (a1), (a2) and (a3) represent 
three-phase currents, respectively, and (b1), (b2) and (b3) are their corresponding results after 

WT and the normalization process. It is apparent that the current waveforms become clear 
after the wavelet signal processing, and the signal amplitudes are also normalized to the range 
of [‒1, +1], which can be observed easily from (b1), (b2) and (b3).  

In this example, each fault class has 14 samples for training and the remaining 26 samples 
for testing. Seven SVDD classifiers are established for machine learning. Also, seven and 

twenty-one BSVM classifiers are generated for the one-against-rest SVM and the one-against-
one SVM, respectively. The penalty parameter C is set to be 100 and σ equals 2. With these 
parameters, several support vector classifiers can achieve a good classification performance. 

The hidden layer of BPNN contains 6 neurons, and the activation function from the input 
layer to the hidden layer is selected as logsig, with which good results can be obtained. Table 

5 gives the final results.  
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Fig. 8. Three-phase current waveforms of inverter before and after WT during open fault at T1. 

 
Table 5. The classification results of 7 faults for the inverter. 

CLASSIFIER 
ACCURACY 

(×100%) 
TESTING TIME  

(S) 
TRAINING TIME  

(S) 
NUMBER OF SVs 

One-against-rest SVM 0.940 1.094 1.038 94 

One-against-one SVM 0.967 3.247 0.570 70 

BPNN 0.918 4.460 0.812 − 

SVDD 0.786 0.947 0.094 16 

iSVDD 0.956 1.273 0.094 ＞16 

 
In this experiment, with no more than 1 second in testing, the iSVDD can achieve 95.6% 

accuracy, which is close to the one-against-one SVM, and we can also observe that the SVDD 

training needs very little time. The neural classifier can achieve 91.8% accuracy, but it needs 
0.812 and 4.46 seconds to perform the training and testing tasks, respectively.  

In this example, we still investigate the impact of kernel parameter σ on the classification 
performance of four classifiers. The curves of classification accuracy for the classifiers, 
corresponding to the values of σ, are shown in Fig. 9.  

In Fig. 9, it is clear that the iSVDD has a performance very close to the one-against-one 
SVM, whereas, in this example, the one-against-rest SVM shows a significant performance 

fluctuation when the value of σ is increased. The one-against-one SVM still demonstrates a 
good performance in diagnosing this PEC and this is the main reason of selecting it as the 

auxiliary classifier of conventional SVDD.  
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Fig. 9. The comparison of classification accuracy for 4 classifiers regarding σ (the inverter). 

 

3.3. Analysis of results 

 
Two experiments indicate that the SVM classifiers, together with the BPNN classifier, can 

be applied to fault classification of power electronic circuits. Among these classifiers, the one-
against-one SVM has an excellent classification performance even if the kernel parameter is 

varied. However, the one-against-one SVM consumes a lot of time to implement fault 
classification, because this classifier needs to compute many BSVM classifiers, whose 

number will increase drastically with the increasing number of fault classes.  
The experiments also indicate that the SVDD method can be applied to fault classification 

of power electronic circuits. However, this classifier needs to be improved, because samples 

can fall into the RA. This phenomenon can be observed directly from the 2-dimensional data 
distribution space in diagnosing the actual inverter. Fig. 10 displays SVDD boundaries of the 

fault samples of inverter in the original data space. In this Figure, seven enclosed boundaries 
indicating corresponding faults (f0, f1, …, f5 and f6) are plotted and these RAs can be easily 
observed directly. For example, the RA formed by class f4 and f5 is clear in this 2-

dimensional picture. In addition, the area outside all the boundaries is regarded as the 
special RA.  

The RAs must be resolved for improving performance of the SVDD method. The results 
for two circuits indicate that the presented iSVDD can achieve a significant performance 

improvement over the SVDD. However, this improvement needs to calculate extra BSVM 
classifiers. Hence, compared to the conventional SVDD method, the time consumption for the 
iSVDD is increased. Despite that, the iSVDD consumes less time in testing than the one-

against-one SVM does. Also, from the results we can see that both testing and training for the 
conventional SVDD classifier is very fast. This is another reason why we adopt this classifier 

as the fault classification tool of PECs.  
The BPNN is also a good classifier in fault classification. It demonstrates a good 

performance in diagnosing 5 faults in the rectifier and 7 faults in the inverter. However, in our 

investigations this classifier cannot converge in training 22 fault classes for the first PEC. In 
order to solve this problem, some additional methods, e.g. a classifier group technique can be 
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used [12, 33]. However, to the way of improving the BPNN classifier will not be discussed in 

this paper.  
 

                   
           Fig. 10. SVDD boundaries in the original data space for the inverter. 

 

4. Conclusions 

 

This paper presents a method of PEC fault classification based on the iSVDD classifier. 
The conventional SVDD has a very high training and testing speed. But, in many cases, this 

classifier has a poor classification performance and, therefore, needs to be improved. In our 
research, the one-against-one SVM is adopted to implement the improvement task. After the 

improvement, the iSVDD is found to have its performance very close to the one-against-one 
SVM. Moreover, it needs much less time in testing. This indicates that the presented iSVDD 

can be considered as an alternative to the one-against-one SVM. In comparison with the 
conventional SVDD, the presented method can achieve a significant performance 
improvement, which is at the cost of some extra calculations of BSVM. Also, considering the 

variation of kernel parameter, the presented method demonstrates a good and relatively stable 
classification performance. In our investigations, the BPNN classifier is also suited for the 

fault diagnosis task, but this classifier shows an unreliable performance because different 
trainings probably lead to different results [28, 34]. In the first example, the BPNN cannot 
even converge in training 22 fault classes. In our research, among three trainings, the best 

performance of the BPNN is selected for the purpose of comparison. Despite this, the 
designed neural classifier seems to be inferior to the presented method.  

In our research, the SVDD classifier is improved by the one-against-one SVM and this 
improvement is proved to be effective. Other methods can also be considered to improve the 
conventional SVDD classifier, and these methods will be envisaged in our future work.   

On the other hand, the illustrated fault class setup for the power electronic circuit seems to 
be direct and simple, and only the open fault for the power switch is considered. In fact, some 

more complicated fault classes exist in an electronic circuit. For instance, in [35], the beta 
forward factor of a transistor is considered as a potentially faulty parameter and this parameter 
is considered to be important in predicting a component fault. Our next work will also 

consider a more complex and practical fault class setup.  
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