
Theoretical and Applied Informatics
ISSN 1896–5334

Vol.23 (2011), no. 2
pp. 127–145

DOI: 10.2478/v10179-011-0009-5

Computational Aspects of GPU-accelerated Sparse Matrix-Vector
Multiplication for Solving Markov Models

BEATA BYLINA, JAROSŁAW BYLINA, MAREK KARWACKI

Institute of Mathematics
Marie Curie-Skłodowska University

Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland
beata.bylina@umcs.pl jaroslaw.bylina@umcs.pl marek.karwacki@gmail.com

Received 28 May 2011, Revised 20 June 2011, Accepted 29 June 2011

Abstract: In this article we investigate some computational aspects of GPU-accelerated matrix-vector
multiplication where matrix is sparse. Particularly, we deal with sparse matrices appearing in modelling
with Markovian queuing models. The model we use for research is a Markovian queuing model of a
wireless device. This model describes the device’s behavior during possible channel occupation by other
devices.

We study the efficiency of multiplication of a sparse matrix by a dense vector with the use of an
appropriate, ready-to-use GPU-accelerated mathematical library, namely CUSP. For the CUSP library we
discuss data structures and their impact on the CUDA platform for the fine-grained parallel architecture of
the GPU. Our aim is to find the best format for storing a sparse matrix for GPU-computation (especially
one associated with the Markovian model of a wireless device).

We compare the time, the performance and the speed-up for the card NVIDIA Tesla C2050 (with ECC
ON). For unstructured matrices (as our Markovian matrices), we observe speed-ups (in respect to CPU-only
computations) of over 8 times.

Keywords: Markovian models, wireless network models, GPU, matrix-vector multiplication, sparse
matrices

1. Introduction

Markov chains are a tool for modelling various complex systems, among others com-
puter systems and networks. Recently they are commonly used for modelling wireless
networks [3, 4, 10]. One of the problems appearing while using Markov chains to model
complex systems making difficult the full utilization of the approach is a very large size
of the model and thereby implied a long computation time (and memory consumption).

128

Modern graphic cards (GPU — graphics processing units) enable significant speed-
ing up computations in scientific and engineering applications. They consist of many
separate and independent (to some extent) computing cores. Originally used to image
processing, now they are suitable to general purpose computations.

Within the domain of performance analysis there has been some work on the subject
of GPU-enabled computations connected to modelling. For instance, in [1] authors show
an implementation for LTL (linear temporal logic) model checking which accelerated
computations on many-core GPU platforms.

To improve the performance we can use GPUs. In [6] some GPU-enabled steady-
state parallel solver is described. The solver uses NVIDIA’s Compute Unified Device
Architecture (CUDA) to perform calculations on a graphics processing unit (GPU). To
find steady-state (stationary) probabilities, authors used the most easily parallelisable
iterative solution technique, namely Jacobi method.

Here we consider multiplication of a sparse matrix by a dense vector (SpMV). The
operation SpMV is a main component for many various numerical algorithms [9] used
both for computing stationary probabilities (e.g. by algorithms GMRES and CGS) and
for transitional probabilities (e.g. by uniformization [8] and Krylov-based methods).

The operation of dense matrix-vector multiplication easily maps to many threads of
GPU. However, multiplying a sparse matrix by a (dense) vector is a serious problem
because coalescent access to the matrix elements is difficult — the elements are signifi-
cantly dispersed. That is why it is very important to choose an adequate format of sparse
matrix storage for GPU computations.

The aim of this paper is to present research on the efficiency of multiplying a sparse
matrix by a dense vector with the use of GPU to gain high performance at low cost. We
examine sparse matrices arising in different problems, particularly transition rate matri-
ces describing Markovian models of wireless networks. The considered matrices span
quite a wide spectrum: we investigated different data representations for such matrices
and the influence of the representation on GPU-enabled implementations. We used an
appropriate, ready-to-use GPU-accelerated mathematical library: CUSP.

The paper is structured as follows. Section 2 provides a brief overview of a back-
ground theory, a model of a wireless network device and a GPU architecture. Section
3 describes different data representations for sparse matrices and their usability for im-
plementing the multiplication of a sparse matrix by a dense vector with the use of GPU.
Section 4 considers problems related to SpMV with the use of GPU. Sections 5 presents
some numerical results. Section 6 provides some concluding remarks.

129

2. Background

2.1. Numerical Solutions of Markov Chains

A CTMC (Continuous-Time Markov Chain) may be represented by a set of states
and a transition rate matrix Q containing state transition rates as coefficients and can be
analyzed by using probabilistic model checking.

While analyzing steady states (that is: independent of time, or: after a very long run)
of Markov chains, we obtain a linear equation system:

QTx = 0, x ≥ 0, ||x||1 = 1, (1)

where Q is a transition rate matrix and x is an unknown vector of stationary states
probabilities. The matrix Q is a square one of size n × n (n being the number of
CTMC’s states), usually a big one, of rank n−1, sparse, with weakly dominant diagonal,
singular, ill-conditioned. These traits of Q cause the need of a special treatment of the
system (1). For solving the system (1), one generally uses direct, iterative, projection
and decomposition methods [9]. The main computational operation for most of these
methods is multiplying a (sparse) matrix by a (dense) vector.

Quite a similar computational situation takes place in transitional states analysis.
Transitional states probabilities are probabilities dependent on time — that is, we search
x(t). Now, we obtain another equation — an ordinal differential one with initial condi-
tions (a Chapman-Kolmogorov system):

QTx(t) =
dx(t)

dt
, x(0) = x0. (2)

For this equation we have an analytical solution:

x(t) = eQtx0. (3)

Of course, to find x(t) we can compute right-hand expression of (3) or we can numeri-
cally solve the ODE (2). In the former case the problem is to compute eQt which can be
expressed (using the Taylor formula) as an infinite series:

eQt =
∞∑

k=0

(Qt)k

k!
. (4)

The task of computing a power of a matrix is not a numerically stable one. So, we
have to use other approaches as uniformization method [8], general ODE solvers and
Krylov-based methods. Just like for solving (1), the most time-consuming part of the
uniformization and Krylov-based methods (and some other solvers, too) is the matrix-
vector product.

That is why it is very important to make computation of the matrix-vector products
efficient.

130

2.2. WLAN Node Model

As an example of the use of Markov models, let us consider a following problem.
We consider the performance of a wireless network where the access to the transmission
medium follows well-known rivalisation procedure: DCF. The DCF (Distributed Coor-
dination Function) mechanism is a part of 802.11 standard [5]. When a new packet is
going to be sent, the medium is checked if it is busy for a fixed period of time (distributed
interframe space, DIFS). If the channel is free, the packet is transmitted. However, if the
channel happens to be busy, a collision control mechanism is employed. It consists in
three steps:

• First, a backoff time is randomly chosen as an integer number of fixed time inter-
vals σ, from 〈0;W − 1〉 (where W is a minimal value of the contention window).

• Second, the device waits the chosen time (freezing when the channel is busy).

• Third, if the channel is free after this countdown, the packet is sent. If the channel
is not free, the whole procedure is repeated but the range for randomized backoff
time is 〈0; 2 ·W − 1〉. If the transmission also fails this time, the drawing range
becomes 〈0; 2 · 2 ·W − 1〉 and so on, up to 〈0; 2m ·W − 1〉 (that is: 2m ·W is a
maximal value of the contention window).

Markovian queuing model [4] of such a mechanism is presented in Figure 1. The
state of the model is described with four integers (c, k, f, s):

• c ∈ 〈0;C〉 is the current number of packets in the system,

• k ∈ 〈0;m〉 is the number of failed transmission attempts,

• f ∈ 〈0; 2m ·W − 1〉 is the current number of time slots left to the moment of the
next transmission attempt;

• s ∈ {0; 1} is a flag equal to 1 if and only if the current packet is being sent.

Besides C (maximum capacity of the system), m and W , the model has other para-
meters:

• λ is the rate of the new packet appearance in the device;

• µ is the rate of packets’ transmission;

• p is the the collision probability;

• η is the rate of the transition between slots f and f − 1.

131

Fig. 1. The Markovian queuing model of the DCF mechanism

2.3. GPU and CUDA Architecture

Graphics Processing Units (GPUs) have recently been used for many applications
beyond graphics, introducing the term general-purpose computation on graphics proces-
sors (GPGPU), owing to (among others) the CUDA architecture (Compute Unified De-
vice Architecture) [7] prepared by NVIDIA.

Graphic processing units are manycore computing systems, being able to deal with
thousands threads running in parallel. In contrast to CPUs, GPUs have a relatively higher
effective memory clock in comparison to its computational core clock. The operations
performed on each data element are mutually independent, and can be efficiently com-
puted in parallel using many processors on the GPUs.

One of the major challenges in developing GPGPU algorithms is to create techniques
which fully use pipelining, many cores and high memory bandwidth. It is not an easy
task to build an efficient algorithm which uses all the GPU’s features. Therefore, we
propose using ready-to-use libraries — what means that problems of pipelining, memory
access and block size do not involve us directly.

132

At present (June 2011) there are not many publicly available libraries providing
SpMV on GPU. In this paper we choose for benchmarking CUSP [14] supporting mul-
tiple sparse matrices storage formats.

The library developed by the authors of [2] is for general sparse linear algebra prob-
lems, also with some graph algorithms, all implemented in C++ for CUDA. The other
libraries we looked into are CUDPP [13], CUSPARSE [15] and OpenNL [12]. Unfor-
tunately, all of them support SpMV only in CSR format. We have not seen any perfor-
mance advantage over CUSP while making simple benchmarks of these different CSR
SpMV implementations.

3. Sparse Matrix Storage Formats

There are many methods for storing sparse matrices data. The main distinction be-
tween them is storage pattern, number of non-zero elements per row and overall matrix
density. On the basis of those parameters we select the most suitable format for our task.
Formats described in this section are not novel, however GPU architecture is so much
different than CPU that requirements for storing methods are also different. Having it
in mind, we present some basic formats which are suitable for GPU. Figure 2 illustrates
the primary sparse matrix in dense format on which we will present sparse formats.

A =




4 0 0 0 1
0 2 0 9 0
0 0 0 5 0
1 3 0 2 1
0 0 0 0 8




Fig. 2. Primary matrix in dense format

3.1. Coordinate Format (COO)

Coordinate format is the simplest and most flexible format for general sparse ma-
trices. However, compared with other formats, it is very memory inefficient and com-
putationally intensive. It comprises the arrays data for non-zero elements, row and col
representing indices in primary dense matrix. This is popular format for representing
sparse matrices files, for example in MATLAB [18]. Figure 3 represents COO storage
scheme.

133

data = [4 1 2 9 5 1 3 2 1 8]
col = [0 4 1 3 3 0 1 3 4 4]

row = [0 0 1 1 2 3 3 2 1 4]

Fig. 3. COO storage scheme

3.2. Compressed Sparse Row Format (CSR)

Compressed Sparse Row format is a general-purpose sparse matrix format (just like
COO). The difference in storage scheme between row-sorted COO and CSR is in row
array. In CSR third array contains offsets of each row represented in data (see Figure 4).
Due to similarity between CSR and COO, the conversions are straightforward (if COO
is row-sorted). Row offsets facilitate efficient querying of matrix values which is very
important in matrix-vector products.

data = [4 1 2 9 5 1 3 2 1 8]
col = [0 4 1 3 3 0 1 3 4 4]
ptr = [0 2 4 5 9 10]

Fig. 4. CSR storage scheme

3.3. ELLPACK Format (ELL)

ELLPACK [17] stores a sparse matrix on two arrays dimension M ×NNZ, where
M is the number of rows and NNZ is the maximum number of non-zero elements per
row. Rows which contain less than NNZ elements are padded with zeros. This format
is well suited for sparse matrices with similar density in each row. Figure 5 illustrates
data and indices matrices in ELL format.

data =




4 1 ∗ ∗
2 9 ∗ ∗
5 ∗ ∗ ∗
1 3 2 1
8 ∗ ∗ ∗




indices =




0 4 ∗ ∗
1 3 ∗ ∗
3 ∗ ∗ ∗
0 1 3 4
0 ∗ ∗ ∗




Fig. 5. ELL storage scheme

3.4. Hybrid ELL+COO Format (HYB)

Hybrid format combines efficient memory bandwidth of ELL and flexibility of COO.
It is very often the most efficient format for general sparse matrices. HYB stores the most
common number of non-zeros per row in ELL and the rest part in COO (see Figure 6).

134

The number of optimal non-zeros per row can be computed using a histogram of the row
sizes (this method is used in CUSP library [14] we discuss later).

ell_data =




4 1
2 9
5 ∗
1 3
8 ∗




ell_indices =




0 4
1 3
3 ∗
0 1
0 ∗




coo_data =
[

2 1
]

coo_col =
[

3 4
]

coo_row =
[

3 3
]

Fig. 6. HYB storage scheme

4. Sparse Matrix-Vector Multiplication on GPU

Sparse matrix-vector multiplication (SpMV) is the most commonly used operation
in sparse matrix computations. Performance of many scientific and engineering applica-
tions highly depends on the operation:

y = Ax + y, (5)

where A is a sparse matrix and x and y are dense vectors.
In this section we show the differences in implementing SpMV on CPU and GPU.
CUDA architecture is highly different than CPU. To achieve relatively good per-

formance on GPU in SpMV with storage formats taken from CPU we often need to
strongly change the algorithm. On GPU it is very important to properly access the mem-
ory. In CUDA implementations we should always consider transforming the algorithm
so we can use effectively shared memory and get coalesced access to global memory. It
always requires to process data in a specific way and order.

SpMV using CSR storage format is one of the examples where CPU implementation
is effective and naive CUDA code is inefficient. A simple performance comparison was
shown in [11]. Figures 7 and 8 illustrate basic implementations for CPU and GPU. This
straightforward CUDA kernel processes one row per thread, thus it is very difficult to
properly utilize the GPU.

One of the solutions for this problem is to split row processing across multiple
threads as it was proposed in [2] and implemented in CUSP library [14]. In this variant
one row is assigned to one warp. The results from each thread are accumulated in shared
memory. When all threads within warp finish processing their parts, they sum all ele-
ments from shared memory vector using parallel reduction algorithm. Figure 9 shows
this optimized kernel.

135

vo id h o s t _ c s r _ s p m v (f l o a t ∗ da ta , i n t ∗ co l , i n t ∗ p t r ,
f l o a t ∗x , f l o a t ∗y , i n t s i z e) {

f l o a t r e s u l t = 0 ;
f o r (i n t i = 0 ; i < s i z e ; i ++) {

f o r (i n t j = p t r [i] ; j < p t r [i + 1] ; j ++)
r e s u l t += d a t a [j] ∗ x [c o l [j]] ;

y [i] = r e s u l t ;
}

}

Fig. 7. CPU implementation of SpMV using CSR format

_ _ g l o b a l _ _ vo id gpu_csr_spmv (f l o a t ∗ da ta , i n t ∗ co l ,
i n t ∗ p t r , f l o a t ∗x , f l o a t ∗y , i n t s i z e) {

i n t i = t h r e a d I d x . x + b l o c k I d x . x ∗ blockDim . x ;
i f (i < s i z e) {

f l o a t r e s u l t = 0 ;
f o r (i n t j = p t r [i] ; j < p t r [i + 1] ; j ++)

r e s u l t += d a t a [j] ∗ x [c o l [j]] ;
y [i] = r e s u l t ;

}
}

Fig. 8. Inefficient GPU implementation of SpMV using CSR format

136

_ _ g l o b a l _ _ vo id s p m v _ c s r _ v e c t o r _ k e r n e l (c o n s t i n t num_rows ,
c o n s t i n t ∗ p t r , c o n s t i n t ∗ i n d i c e s , c o n s t f l o a t ∗ da ta ,
c o n s t f l o a t ∗x , f l o a t ∗y) {
_ _ s h a r e d _ _ f l o a t v a l s [] ;
i n t t h r e a d _ i d = blockDim . x ∗ b l o c k I d x . x + t h r e a d I d x . x ;
i n t warp_ id = t h r e a d _ i d / 3 2 ;
i n t l a n e = t h r e a d _ i d & (32 − 1) ;
i n t row = warp_ id ;
i f (row < num_rows) {

i n t r o w _ s t a r t = p t r [row] ;
i n t row_end = p t r [row + 1] ;
v a l s [t h r e a d I d x . x] = 0 ;
f o r (i n t j j = r o w _ s t a r t + l a n e ; j j < row_end ; j j += 32)

v a l s [t h r e a d I d x . x] += d a t a [j j] ∗ x [i n d i c e s [j j]] ;
i f (l a n e < 16)

v a l s [t h r e a d I d x . x]+= v a l s [t h r e a d I d x . x + 1 6] ;
i f (l a n e < 8) v a l s [t h r e a d I d x . x]+= v a l s [t h r e a d I d x . x + 8] ;
i f (l a n e < 4) v a l s [t h r e a d I d x . x]+= v a l s [t h r e a d I d x . x + 4] ;
i f (l a n e < 2) v a l s [t h r e a d I d x . x]+= v a l s [t h r e a d I d x . x + 2] ;
i f (l a n e < 1) v a l s [t h r e a d I d x . x]+= v a l s [t h r e a d I d x . x + 1] ;
i f (l a n e == 0)

y [row] += v a l s [t h r e a d I d x . x] ;
}

}

Fig. 9. Efficient GPU implementation of SpMV using CSR format [2]

137

5. Numerical Experiments

In this section we test the performance of SpMV on GPU using CUSP library with
different storage formats and MKL (Math Kernel Library, [16]) with CSR on CPU. The
input matrices are divided into two sets. The first set contains matrices from different
scientific fields like finite element method, quantum chromodynamics, epidemiology
and proteins [19]. These data were also explored using GeForce GTX 280 in [2]. The
second set of matrices we consider consists of transition rate matrices describing the
Markovian queuing model of the DFC mechanism for various parameters.

5.1. Testing Environment

We intend to find the most suitable storage format for effective SpMV on the second
set and compare the performance with SpMV on the first set. We also want to check
what speed-up can get GPU over CPU in this computational problem, so we use MKL
as a CPU representative. Table 1 shows specification of hardware and software used in
experiment.

Tables 2 and 3 present details about matrices, where n is number of rows, nz num-
ber of non-zero elements, minnz minimum number of non-zero elements in column,
maxnz maximum number of non-zero elements in column, d = nz/n represents matrix
row (or column) density and dispersion is the average distance of non-zero elements
from diagonal divided by matrix size n.

CPU Intel Core i7 950 3.07GHz (48.96 Gflop/s SP)
Host memory 24 GB DDR3 1333 MHz (10 GB/s)
GPU Tesla C2050 (1030 Gflop/s SP, 515 Gflop/s DP)
GPU memory 3 GB GDDR5 (144 GB/s with ECC off)
OS CentOS 5.5 (Linux 2.6.18-164.el5)
Libraries CUDA Toolkit 3.2, CUSP 0.1.2, Intel MKL 10.3

Table 1. Specification of hardware and software used in experiment

name n nz minnz maxnz d = nz/n dispersion

cant 62 451 2 034 917 1 40 32.58 0.002666
consph 83 334 3 046 907 1 78 36.56 0.023845
dense2 2 000 4 000 000 2 000 2 000 2 000 0.333333

mc2depi 525 825 2 100 225 2 4 3.99 0.000447
pdb1HYS 36 417 2 190 591 1 162 60.15 0.025975

qcd5_4 49 152 1 916 928 39 39 39 0.026423
rma10 46 835 2 374 001 4 145 50.69 0.135432

shipsec1 140 874 3 977 139 1 78 28.23 0.014202

Table 2. Description of unstructured matrices (first set)

138

name n nz minnz maxnz d = nz/n dispersion

m_2.1K 2 160 11 232 5 8 5.20 0.048636
m_2.3K 2 337 11 143 3 6 4.77 0.031019
m_3K 3 016 13 194 3 12 4.37 0.059780

m_14K 14 256 89 856 6 10 6.31 0.041074
m_40K 40 385 182 743 3 28 4.53 0.044207
m_50K 50 225 283 430 4 21 5.64 0.054648
m_68K 68 117 273 159 3 68 4.01 0.064590
m_130K 129 921 644 727 3 12 4.96 0.010990
m_650K 649 611 2 994 421 3 84 4.61 0.035446
m_1M 1 034 273 4 660 479 3 132 4.51 0.042191

m_2.6M 2 595 296 11 951 234 3 164 4.60 0.035123
m_3.7M 3 690 141 17 745 419 3 100 4.81 0.019029

Table 3. Description of Markov matrices (second set)

5.2. Results

In all examined examples we find that SpMV on GPU offers much better perfor-
mance than CPU. Tables 4 and 6 illustrate time in seconds for single precision SpMV
using various storage format on GPU and CSR from MKL on CPU. The bold values are
the fastest computation times. COO as a simplest format was outperformed by the oth-
ers. However CSR, ELL, and HYB achieve similar performance depending on matrix
structure and size. CSR has quite stable speed across multiple matrices and it seems to
be a good choice when we do not know anything about non-zeros pattern. For bigger
Markov matrices the fastest SpMV was in HYB format. HYB does not perform well
in many potentially suitable cases. The reason is that HYB SpMV granularity is not
sufficient (one thread per row) and matrix needs to be large enough to utilize the GPU.
For comparison in CSR kernel one row is processed by a warp (32 threads).

Tables 5 and 7 show speedup results for single precision SpMV using various
storage format on GPU and CSR from MKL on CPU. The bold values are the best
speedup.

Figure 10 shows the performance of SpMV in Gflop/s on unstructured matrices.
We can see that the best utilization of CPU in CSR format is 8.6% for ‘shipsec1’ and
the worst 4.1% for ‘mc2depi’ both in single precision. On GPU this situation is much
worse, the highest utilization is only 1.4% for ‘consph’ in CSR and the smallest 0.7%
for ‘qcd5_4’.

Usually, double precision computations are not more than twice longer than single
precision ones (in GPU case only on Fermi family cards). Here, we observe larger
differences because SpMV rely heavily on memory bandwidth.

Performance of SpMV on Markov matrices is lower than on previous set. The main
reason is that Markov matrix has higher sparsity. In Figures 11 and 12 we can see that

139

name CSR (CPU/MKL) COO CSR ELL HY B

cant 1.061285 0.549938 0.359008 0.254403 0.316862
consph 1.875143 0.826806 0.543938 0.342179 0.348769
dense2 2.443000 0.975000 0.565000 2.258999 0.978000

mc2depi 2.542999 0.849999 0.434999 0.280999 0.275999
pdb1HYS 1.392071 0.551584 0.300497 0.357471 0.366546

qcd5_4 1.527000 0.702999 0.554999 0.250999 0.255000
rma10 1.584999 0.737000 0.470999 0.642999 0.556999

shipsec1 1.893026 1.073512 0.800680 0.630669 0.534465
Table 4. Time in seconds of single precision SpMV on first set of matrices

name COO CSR ELL HY B

cant 1.93 2.96 4.18 3.35
consph 2.27 3.47 5.48 5.37
dense2 2.51 4.32 1.08 2.50

mc2depi 2.99 5.85 9.05 9.21
pdb1HYS 2.43 4.64 3.90 3.80

qcd5_4 2.17 2.75 6.08 5.99
rma10 2.51 3.93 2.88 3.32

shipsec1 1.76 2.36 3.00 3.54
Table 5: Speed-up of single precision GPU-accelerated SpMV on first set of matrices, relative to CPU/MKL performance

name CSR (CPU/MKL) COO CSR ELL HY B

m_2.1K 0.012902 0.206822 0.006916 0.011318 0.207554
m_2.3K 0.011268 0.214451 0.005285 0.008456 0.210905
m_3K 0.013545 0.212084 0.005806 0.009192 0.213355
m_14K 0.075937 0.241931 0.026829 0.024107 0.226387
m_40K 0.140423 0.284207 0.042110 0.040607 0.223787
m_50K 0.217406 0.299878 0.080342 0.066884 0.234196
m_68K 0.333999 0.335000 0.104000 0.115000 0.270999

m_130K 0.810000 0.452000 0.174000 0.167999 0.292000
m_650K 3.425000 1.604999 0.637000 0.634999 0.589999
m_1M 4.325999 2.330999 0.963999 0.976999 0.815999

m_2.6M 15.30099 5.964000 2.378999 2.576999 1.771000
m_3.7M 16.83800 9.013999 4.018000 3.625999 2.628000

Table 6. Time in seconds of single precision SpMV on Markov matrices

140

name COO CSR ELL HY B

m_2.1K 0.06 1.86 1.08 0.06
m_2.3K 0.05 2.20 1.38 0.05
m_3K 0.07 2.33 1.56 0.07
m_14K 0.31 2.81 3.17 0.34
m_40K 0.50 3.36 3.53 0.63
m_50K 0.72 2.68 3.24 0.93
m_68K 1.00 3.21 2.90 1.23

m_130K 1.79 4.66 4.82 2.77
m_650K 2.14 5.38 5.40 5.81
m_1M 1.86 4.49 4.42 5.30

m_2.6M 2.57 6.43 5.94 8.64
m_3.7M 1.87 4.19 4.64 6.40

Table 7. Speed-up of single precision GPU-accelerated SpMV on Markov matrices, relative to CPU/MKL performance

for small matrices the best formats are CSR and ELL, while for bigger sizes HYB format
is more suitable.

6. Conclusion

We have described some research on sparse matrix-vector product (SpMV) on GPU.
We have presented four formats for storage of sparse matrices, namely: COO, CSR,
ELL, HYB. For these formats we tested SpMV operation form CUSP library. These
formats were studied for two sets of matrices.

The first set consists of unstructured sparse matrices of various origins. We observe
performance in excess of 18 Gflop/s and 13 Gflop/s in single and double precision re-
spectively. The best format is ELL or HYB. It depends on sparsity of a given matrix —
for sparser ones (lower d) the better format is HYB, and for denser ones ELL is better.
We observe speed-ups over 9 times compared to the best CPU performance.

The second set of matrices arises from our Markovian queuing model of a wireless
network. These matrices are very sparse (d is very small). The performance of SpMV
is lower for this set of matrices. We observe performance over 14 Gflop/s and 8 Gflop/s
in single and double precision respectively for large matrices. The performance is still
lower for smaller matrices and is about 9 Gflop/s and 6 Gflop/s in single and double
precision respectively. The best format is HYB for larger matrices and CSR for smaller
matrices (up to 50000 rows). We observe speed-ups over 8 times compared to the best
CPU performance.

The operation SpMV for matrices of our Markovian model (we can suppose it is
similar in case of other models) has worse performance than for general sparse matrices.
The best format for them is HYB — especially for larger matrices (but it is normal for
Markovian matrices that they tend to be very large). It is so because their dispersion is

141

Fig. 10. Performance of SpMV on first set of matrices (top: single precision; bottom: double precision)

142

Fig. 11. Performance of SpMV on small Markov matrices (top: single precision; bottom: double

precision)

143

Fig. 12. Performance of SpMV on bigger Markov matrices (top: single precision; bottom: double

precision)

144

quite high and their density is very low. But it seems that the future work connected
to SpMV on GPU for Markovian matrices should consist in defining an entirely novel
storage format which could even better use the possibilities of GPUs.

7. Acknowledgement

This work was partially supported within the project N N516 479640 of the Ministry
of Science and Higher Education of the Polish Republic (MNiSW) “Modele dynamiki
transmisji, sterowania zatłoczeniem i jakością usług w Internecie”.

References

1. J. Barnat, L. Brim, M. Ceska: DiVinE-CUDA — a tool for GPU accelerated LTL model
checking, Proceedings of the 8th International Workshop on Parallel and Distributed
Methods in Verification (PDMC’09), Eindhoven, November 2009, pp. 107-111.

2. N. Bell, M. Garland: Efficient Sparse Matrix-Vector Multiplication on CUDA, NVIDIA
Tech. Report No. NVR-2008-004, 2008.

3. G. Bianchi: Performance Analysis of the IEEE 802.11 Distributed Coordination Function,
IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, March 2000, pp. 535-
547.

4. J. Bylina, B. Bylina: A Markovian Queuing Model of a WLAN Node, CCIS 160, Computer
Networks 2011, pp. 80-86.

5. IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications, Nov. 1997, P80211.

6. B. R. C. Magalhaes, N. J. Dingle, W. J. Knottenbelt: GPU-enabled steady-state solution of
large Markov models., 6th International Workshop on the Numerical Solution of Markov
Chains (NSMC’10), 16-17 Sep 2010, Williamsburg, Virginia.

7. NVIDIA Corporation. CUDA Programming Guide. NVIDIA Corporation, 2009.
http://www.nvidia.com/

8. R. B. Sidje, K. Burrage, S. MacNamara: Inexact Uniformization Method for Computing
Transient Distributions of Markov Chains. SIAM J. Scientific Computing 29(6): 2562-
2580 (2007).

9. W. J. Stewart: Introduction to the numerical solution of Markov chains, Princeton Univer-
sity Press, Princeton, NJ, 1994.

10. L.-C. Wang, S.-Y. Huang, A. Chen: On the Throughput Performance of CSMA-based
Wireless Local Area Network with Directional Antennas and Capture Effect: A Cross-
layer Analytical Approach, WCNC 2004 / IEEE Communications Society, pp. 1879-1884.

11. M. Wozniak, T. Olas, R. Wyrzykowski: Parallel Implementation of Conjugate Gradient
Method on Graphics Processors, LNCS, PPAM 2009.

145

12. http://alice.loria.fr/index.php/software/4-library/
/23-opennl.html

13. http://code.google.com/p/cudpp/

14. http://code.google.com/p/cusp-library/

15. http://developer.nvidia.com/cuda-toolkit-40

16. http://software.intel.com/en-us/articles/intel-mkl/

17. http://www.cs.purdue.edu/ellpack/

18. http://www.mathworks.com/

19. http://www.nvidia.com/content/NV_Research/matrices.zip

Obliczeniowe aspekty mnożenia macierzy rzadkiej przez wektor dla
rozwiązywania modeli Markowa przyspieszanego przez karty GPU

Streszczenie

Łańcuchy Markowa są przydatnym narzędziem do modelowania systemów
złożonych, takich jak systemy i sieci komputerowe. W ostatnich latach łańcuchy
Markowa zostały z powodzeniem wykorzystane do oceny pracy sieci bezprzewodowych.
Jednym z problemów jaki się pojawia przy wykorzystywaniu łańcuchów Markowa
w modelowaniu sieci są problemy natury obliczeniowej. W artykule zajmiemy się
badaniem mnożenia macierzy rzadkiej przez wektor, które jest jedną z głównych ope-
racji podczas numerycznego rozwiązywania modeli Markowowskich. Aby, przyspie-
szyć czas obliczeń mnożenia macierz rzadkiej przez wektor wykorzystano funkcje z bib-
lioteki CUSP. Biblioteka jest zbiorem funkcji wykonywanych na GPU (ang.Graphics
Processing Unit) celem skrócenia czasu obliczeń.

Do testowania operacji mnożenia macierzy rzadkiej przez wektor badano macierze
z Markowowskiego modelu pracy sieci bezprzewodowej. Model ten opisuje zachowanie
urządzenia, gdy kanał transmisyjnych może być zajęty przez inne urządzenia. Macierz
przejść wspomnianego modelu jest macierzą rzadką i potrzeba specialnej struktury
danych do jej przechowywania, dlatego w artykule dyskutowane są różne struktury
danych dla macierzy rzadkich i ich przydatność do obliczen na kartach graficznych.

W pracy porównano czas, wydajność i przyspieszenie jakie otrzymano podczas
testowania biblioteki CUSP na karcie NVIDIA Tesla C2050 dla niestrukturalnych
macierzy rzadkich opisujących model zajętości węzła w sieciach bezprzewodowych przy
różnych formatach przechowywania macierzy rzadkich. Dla testowanych macierzy za-
uważono ośmiokrotne przyspieszenie obliczeń przy wykorzystaniu karty graficznej.

