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Abstract: The problem of query selectivity estimation for database queries is critical for efficient
query execution by database management systems. A query execution method strongly depends on early
estimated size of a query result. This estimation determines a data access method used later during the
query execution. The selectivity parameter is a fraction of table rows that satisfy a single-table query
condition. For a selection condition of a range query where an attribute has a continuous domain, the
selectivity is equivalent to a definite integral form probability density function (PDF) of attribute values
distribution. For a compound selection condition based on many attributes we need a multidimensional
space-efficient non-parametric estimator of multivariate PDF of attribute values distribution. A known
approach based on Discrete Cosine Transform (DCT) spectrum as an representation of multidimensional
PDF is considered. The energy compaction property of DCT lets omit a region of spectrum coefficients
with small absolute values without significant losing an accuracy of selectivity estimation. An area of
relevant spectrum coefficients is called a sampling zone. Results of experiments from previous works
shows that applying the reciprocal shape of the sampling zone gives the least selectivity estimation error
subject to a predetermined size of the zone. The main result of this work is a theoretical confirmation of only
experimental results from previous works. The paper presents the proof of the theorem that the reciprocal
shape of the sampling zone is asymptotically error-optimal. The proof is based on calculus of variations
and the isoperimetric problem.

Keywords: query selectivity estimation; probability density function; discrete cosine transform; cal-
culus of variations; isoperimetric problem

1. Introduction

The effectiveness of a database query execution is one of the main goals of any data-
base management system (DBMS). Query processing consists of two phases: a prepare
phase and an execution one. During the prepare phase a cost-based query optimizer
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module (CBO) chooses the best query execution method. CBO obtains various methods
of query execution (with different methods of data access) so-called access paths. Us-
ing some cost function CBO estimates a cost of a query evaluating mainly in terms of
number I/O operations for every access path. CBO chooses the best access path with the
least cost value.

Choice of the method depends on an expected size of data satisfying the query con-
dition. This size should be estimated before the query execution. For this reason – the
early estimation of query result set size - the selectivity factor parameter was introduced
in query processing. The selectivity values for given queries can be obtained using sta-
tistical data describing table attribute values distributions stored and maintained in a
database system catalog.

The selectivity for a simple single-table query could be defined as a number of table
rows satisfying the query condition divided by a number of all table rows. Selectivity
values belong to an interval [0, 1]. The selectivity can be also considered as a probability
of drawing a sample row satisfying the selection condition from set of all table rows.

The selectivity for a range query Q1 (a1 < X < b1) (so-called a window-query)
with a simple selection condition based on a one attribute X (where X is a table column
with continuous domain) and a given probability density function fx can be obtained as
follows:

sel1(Q1) =
∫ b1

a1

fx (x) dx. (1)

A nonparametric estimator of probability density function (PDF) is required for accu-
rate selectivity calculation. Histograms is commonly used as estimators of PDF [7].
Most of DBMS e.g. Oracle, MS SQLServer, IBM DB2, Sybase Adaptive Server, Post-
greSQL support histogram-based selectivity calculation methods. Methods using equi-
width (equi-depth) histograms are usually applied.

The problem of selectivity estimation becomes more difficult for complex query
selection conditions based on several table attributes. For example the selectivity of
some 2-dimensional query Q2 (a1 < X < b1 ∧ a2 < Y < b2) based on X and Y table
attributes can be obtained as follows:

sel2 (Q2)=
∫ b1

a1

∫ b2

a2

fxy(x,y)dxdy (2)

where fxy is a PDF of joint distribution of values of X and Y . As we can see in (2) an
estimator of bivariate PDF is needed.

This can be extended for more than 2 dimensions when query selection condition
is based on many attributes. For continuous attribute domains the selectivity value of
a range query is a value of definite integral of multivariate PDF. Hence the problem of
space-efficient nonparametric estimator of multivariate PDF for high dimensions. Mul-
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tidimensional histograms are commonly too much space-consuming representation of
joint-distribution of attribute values.

Many approaches to the multidimensional distribution representation problem have
been known since years. The most simple one with no-storing any multidimensional es-
timator, is based on AVI rule (an attribute value independence assumption [11]). Accord-
ing to the AVI assumption a selectivity for a composite condition is a product of simple
component condition selectivities. This method bases on the probability multiplication
rule for independent events. The AVI rule usage results in an inaccuracy of obtained
values of a query selectivity estimator for correlated data. Despite of this obvious disad-
vantage the AVI rule is very often used in DBMS optimizers because of its simplicity.

There are many advanced techniques of representing multidimensional distribution
suitable for selectivity estimating e.g.: multidimensional kernel estimator [6, 12], bi-
variate spline [8], PHASED [11], MHIST [11], GENHIST [6], STHoles [1], STHoles+
[4], Bayesian Network [5], Discrete Cosine Transform [9], Cosine Series [13], Discrete
Wavelets Transform [3] and many others.

Those theoretical approaches may results ib important practical applications. User-
defined specific methods of selectivity estimation may be implemented in some ad-
vanced commercial DBMS. For example Oracle DBMS provides ODCIStats module
(Oracle Data Cartridge Interface Statistics) [10]. It supports creating domain-specific ex-
tensions for the cost-based query optimizer module. This enables to create/update/delete
user-defined “statistics” (specific representations of attribute values distributions) and
define adequate effective user-defined selectivity estimation functions. This lets to im-
plement in Java and transparently integrate with DBMS any mentioned method of selec-
tivity estimation based on a multidimensional attribute values distribution.

This paper focuses on the theoretical analysis of some aspects of a known uncon-
ventional method of selectivity estimation based on Discrete Cosine Transform (DCT)
proposed by Lee L., Deok-Hwan K., Chin-Wan Ch. in [9]. Authors proposed a selec-
tivity obtaining method based on DCT spectrum calculated for a histogram of attribute
values frequencies. One of the most important advantages of their method is possibility
of selectivity calculation directly from a spectrum (without inverse transform calcula-
tion). Because of DCT energy compaction property a significant part of spectrum is
commonly concentrated in a compact area located near the space-origin of spectrum do-
main (Fig. 1). DCT-coefficients out of this area, with small absolute values, can be omit-
ted without significant loosing of selectivity estimation accuracy. This area was called
sampling zone. Lee at al. proposed some types of sampling zone shapes: spherical,
triangular, reciprocal, rectangular (Fig. 2). They showed experimentally that reciprocal
zone shape is optimal subject to a predetermined size of the sampling zone i.e. the ex-
perimentally obtained mean relative selectivity estimator error for given set of sample
attribute value distributions is the least for the reciprocal zone.
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The previous work is based on experimental results. This paper presents the rigorous
proof that a reciprocal shape of sampling zone is asymptotically error-optimal for prede-
termined size of the sampling zone. This theorem was proven under some restrictions:
2-dimensional case, a high resolution of spectrum (the asymptotic analysis), the assumed
definition of selectivity estimation error (44), the assumed form of spectrum (62). The
proof is based on Lagrange multipliers method, calculus of variations and isoperimetric
problem (known in optimal control theory). A genuine part of the paper is included in
sections 3∼11.

This work is organized as follows: Section 2 is devoted to describe the DCT-based
method of selectivity estimation. Section 3 introduces the assumed definition of a selec-
tivity estimation error. Section 4 defines the mean selectivity based on DCT spectrum
(for 1-dimensional distribution). Section 5 defines the approximate mean selectivity
based on DCT spectrum (for 2-dimensional distribution) using a sampling zone. Sec-
tion 6 introduces the asymptotic approximate mean selectivity (for large values of DCT
spectrum size). Section 7 presents the assumed definition of spectrum (were the energy
compaction property has no meanings). In section 8 we define the criterion of error-
optimal sampling zone that bases on difference between the asymptotic approximate
mean selectivity (for a sampling zone) and the asymptotic mean selectivity (for a full
spectrum). Section 9 presents the method of finding a shape of optimal sampling zone
using methods of calculus of variations and Lagrange multipliers (the section introduces
an adequate Euler-Lagrange equation). Finally in section 10 we obtain a reciprocal func-
tion as asymptotically error-optimal shape of sampling zone.

2. Discrete Cosine Transform and selectivity estimation method – the theoretical
background

This section describes the energy compaction property of discrete cosine transform.
It also introduces the DCT-based method of query selectivity estimation [9] where DCT
spectrum represents attribute values distribution. The section presents shapes of sam-
pling zones (regions of relevant spectrum coefficient) used to obtain compressed space-
efficient DCT-based representation of distribution.

2.1. Discrete Cosine Transform and Energy Compaction Property

Well-known Discrete Cosine Transform is useful in an image and signal processing
(especially in a compression domain).

1-dimensional DCT can be defined as:

g (u)=
√

2
N

ku

N−1∑

n=0

f (n) cos
(

(2n+1)uπ

2N

)
(3)
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and

ku=

{
1√
2
foru= 0

1 for u6= 0
(4)

where series G = (g(u)) is a DCT spectrum of a signal F = (f(n)) for u and n =
0,1,. . . , N - 1.
In DCT-based selectivity estimation method, F will be a vector of frequencies of at-
tribute values, an estimator of 1-dimensional PDF, a series of values of equi-width his-
togram.

1-dimensional inverse transform (IDCT) is defined as follows:

f (n) =
√

2
N

N−1∑

u=0

kug (u) cos
(

(2n+1)uπ

2N

)
. (5)

2-dimesional DCT can be defined as follows:

g (u,v)=
√

2
N

ku

N−1∑

n=0

{√
2
N

kv

M−1∑

m=0

f (n,m) cos
(

(2m+1)vπ

2M

)}
cos

(
(2n+1)uπ

2N

)

(6)
and

kv=

{
1√
2
for v= 0

1 for v 6= 0
(7)

where G = (g(u,v)) is a 2-dimensional DCT spectrum of F = (f(n,m)) for u and
n = 0,1, . . . , N - 1 and v and m = 0,1, . . . , M − 1. In DCT-based selectivity estimation
method, F will be a N ×M matrix of frequencies, an estimator of 2-dimensional PDF.

2-dimensional inverse transform is defined as follows:

f (n,m) =
√

2
N

N−1∑

u=0

ku

[√
2
M

M−1∑

v=0

kvg (u,v) cos
(

(2m+1)vπ

2M

)]
cos

(
(2n+1)uπ

2N

)
.

(8)
The definition of DCT and IDCT can be extended for high dimensions.

For correlated data in F coefficients g(u,v) with significant absolute values are lo-
cated near space-origin of U×V . This well-known energy compaction property of DCT
is illustrated for 2-dimesional case on Fig. 1. An exemplary bivariate PDF of distribu-
tion based on 4 Gaussian clusters (Fig. 1.a) and corresponding 100×100 DCT spectrum
(Fig. 1.b) are presented. Different grayscales of areas on Fig.1.b show regions group-
ing spectrum coefficients that absolute values are within intervals: [0, 0.01], (0.01, 0.1],
(0.1, 1], (1,10], (10,∞). The white area on Fig.1.b means the region of coefficients with
absolute value near or equal zero.
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Fig. 1. (a) – bivariate probability density function of an exemplary distribution based on 4 Gaussian

clusters. (b) – corresponding DCT spectrum with regions of coefficients with comparable absolute values.

2.2. DCT-based selectivity estimation method

DCT spectrum can be used as representation of distribution of attribute values. The
method of selectivity calculation based on DCT spectrum proposed by Lee at al. in [9]
will be explained below.

For 1-dimensional case i.e. the simple query Q1 (a < X < b), let’s assume some
normalization that domain of X is [0, 1]. Hence a1 ∈ [0, 1) and b1 ∈ (a1, 1]. Domain of
X is divided into N partition:

xi=
2i+1
2N

, i= 0, 1, . . . , N−1. (9)

Distribution of X values described by PDF fx can by expressed using (5) as follows:

fx (xn) = f (n)=
√

2
N

N−1∑

u=0

kug (u) cos
(

(2n+1)uπ

2N

)
. (10)

Using (9) and (10) the selectivity for Q1 based on 1-dimensional spectrum can be ob-
tained:

sel1 (Q1)=
∫ b1

a1

fx (x) dx=
√

2
N

N−1∑

u=0

[kug (u)
b1∫

a1

cos (uπx) dx]. (11)

For 2-dimensional case i.e. the query Q2 (a1 < X < b1 ∧ a2 < Y < b2) let’s assume
the normalization that domain of X× Y is [0, 1]2. Hence a1 and a2 ∈ [0, 1), b1 ∈ (a1, 1]
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and b2 ∈ (a2, 1]. Space X×Y is divided into N×M partition by a set of pairs (xi, yj):

xi=
2i+1
2N

, yj=
2j+1
2M

, i= 0, 1, . . . , N−1, j= 0, 1, . . . , M−1. (12)

Joint distribution of X×Y values described by bivariate PDF fxy can by expressed using
(8) as follows:

fxy (xn,ym)=f (n,m)=

=
√

2
N

N−1∑
u=0

ku

[√
2
M

M−1∑
v=0

kvg (u,v) cos
(

(2m+1)vπ
2M

)]
cos

(
(2n+1)uπ

2N

)
.

(13)

Using (12) and (13) the selectivity for Q2 based on 2-dimensional spectrum can be ob-
tained:

sel2 (Q2)=
∫ b1
a1

∫ b2
a2

fxy (x,y) dxdy=

=
∫ b1
a1

√
2
N

N−1∑
u=0

ku

{
b2∫
a2

√
2
M

M−1∑
v=0

kvg (u,v) cos (yvπ) dy

}
cos (xuπ) dx,

(14)

sel2 (Q2)=
√

2
N

√
2
M

N−1∑

u=0

M−1∑

v=0

kukvg(u,v)
b1∫

a1

cos (uπx) dx

b2∫

a2

cos (vπy) dy. (15)

As we can see in (10) and (15) the selectivity can be calculated directly from spectrum
coefficients g (without reconstruction of fby IDCT).

This selectivity calculating method can be extended for more than 2 dimensions [9].

2.3. Shapes of sampling zone

Basing on the definition (15) the selectivity estimator can be formulated as follows:

sel2 (Q2)=
√

2
N

√
2
M

∑

(u,v)εU×V

kukvg(u, v)
b1∫

a1

cos (uπx) dx

b2∫

a2

cos (vπy) dy. (16)

Approximated selectivity estimator based on a sampling zone Z was proposed in [9] as
follows:

ˆsel2 (Q2,Z) =
√

2
N

√
2
M

∑

(u,v)εZ

kukvg(u, v)
b1∫

a1

cos (uπx) dx

b2∫

a2

cos (vπy) dy (17)
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where Z ⊂ U × V . The approximate estimator is calculated using only coefficients
from sampling zone Z. A sampling zone contains significant DCT spectrum coeffi-
cients (coefficients with big absolute values). (u, v) pairs belonging to a sampling zone
should rather concentrate near space origin because of mentioned before DCT energy
compaction property (Fig.1.b).

Some types of sampling zone proposed in [9] were presented on Fig. 2. Blue regions
are sampling zones and white areas mean regions of omitted coefficients. B parameter
determinates a depth of spectrum cutting off.

Fig. 2. Geometrical zonal sampling in 2-dimensionalU× V space, proposed by Lee at al. in [9]

Using the definition of relative selectivity estimation error:

RelErr(Q,Z)=

∣∣∣sel(Q)−ŝel(Q,Z)
∣∣∣

sel(Q)
(18)

basing on set of sample attribute value distributions and set of sample range queries, Lee
at al. experimentally showed that for predetermined size of sampling zone the reciprocal
sampling zone (Fig. 2.c) is rather error-optimal.

In next sections we will present a theoretical proof of the hypothesis that the recip-
rocal shape of sampling zone is error-optimal for high resolutions of DCT spectrum.

3. Selectivity estimation error definition

To take into account all possible range query bounds we introduce msel – the mean
selectivity estimator.

For 1-dimensional case msel is defined as follows:

msel1=

∫ ∫
(a1,b1)∈D sel1 (Q (a1<X<b1)) da1db1∫ ∫

(a1,b1)∈D da1db1
(19)

where D= { (a1,b1) : a1∈ [0, 1)∧b1∈ (a1, 1]}.
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This msel1 calculation method based on the assumption that values of query bounds
a1 and b1 are randomly chosen from intervals defined above according to a uniform
distribution.

Using (1) and (19) the 1-dimensional mean selectivity estimator can be defined as
follows:

msel1=

∫ 1
0 [

∫ 1
a1

[∫ b1
a1

fx (x) dx
]
db1]da1

∫ 1
0 [

∫ 1
a1

db1]da1

=

∫ 1
0 [

∫ 1
a1

[∫ b1
a1

fx (x) dx
]
db1]da1

0.5
. (20)

For 2-dimensional case msel is defined as follows:

msel2=

∫ 1
0

[∫ 1
a2

[∫ 1
0

[∫ 1
a1

sel2(Q2)db1

]
da1

]
db2

]
da2

1∫
0

1∫
a2

1∫
0

∫ 1
a1

db1da1db2da2

. (21)

Using (2) and (21) the 2-dimensional mean selectivity estimator can be defined as fol-
lows:

msel2=

∫ 1
0

[∫ 1
a2

[∫ 1
0

[∫ 1
a1

[∫ b1
a1

[∫ b2
a2

fxy (x,y) dy
]
dx

]
db1

]
da1

]
db2

]
da2

0.25
. (22)

The definition (22) based on the assumption that query bounds have random uniform dis-
tributions and they belong to intervals :a1∈ [0, 1) , b1∈ (a1, 1] , a2∈ [0, 1) , b2∈ (a2, 1].

For large values of size in each dimension, amsel the asymptotic mean selectivity
estimator is introduced below.

For 1-dimensional case when N is large the amsel is defined as follows:

amsel1= msel1|NÀ1 . (23)

For 2-dimensional when N and M are large the amsel is defined as follows:

amsel2 = msel2|NÀ1∧MÀ1 . (24)

The absolute selectivity estimation error for any query can be defined as follows:

Err(Q, Z) =
∣∣∣sel(Q)−ŝel(Q,Z)

∣∣∣ . (25)

The error of mean selectivity estimation defined as follows:

MErr(Z)=
∣∣∣msel− ˆmsel(Z)

∣∣∣ . (26)

The definition of ˆmsel(Z) – the approximate mean selectivity estimator (basing only on
coefficients from sampling zone Z) will be introduced in sections 4 and 5.
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The error of asymptotic mean selectivity estimation defined as follows:

AMErr(Z)=
∣∣∣amsel− ˆamsel(Z)

∣∣∣ . (27)

The definition of ˆamsel(Z) – the asymptotic approximate mean selectivity estimator
(for a high resolution of spectrum and basing only on coefficients from sampling zone
Z) will be introduced in section 6.

The error definition from (27) will be used to find error-optimal shape of sampling
zone in section 8.

4. DCT-based mean selectivity estimator for 1-dimensional case

From (11) we can obtain:

sel1 (Q1)=
√

2
N

∑
u=0, ..., N−1

[kug(u)
sin (uπb1)−sin(uπa1)

πu
]. (28)

Using:

limu→0
sin(u)

u
= 1 = > limu→0

sin (uπb1)−sin(uπa1)
πu

=b1−a1 (29)

and
∑

u=0,...,N−1 [kug(u) sin(uπb1)− sin(uπa1)
πu ] =

= kug(u) sin(uπb1)− sin(uπa1)
πu

∣∣∣
u=0

+
∑

u=1,...,N−1 [kug(u) sin(uπb1)− sin(uπa1)
πu ]

(30)

(specially handling case where u is equal 0) we can obtain the selectivity estimator as
follows:

sel1 (Q1)=
√

2
N

[
k0g (0) (b1−a1)+

∑
u=1,...,N−1

[kug(u)
sin (uπb1)−sin(uπa1)

πu
]
]
.

(31)
Using (20) and (31) we can obtain msel1 – the mean selectivity estimator based on DCT
spectrum coefficients:

msel1= 1
0.5

√
2
N k0g (0)

∫ 1
0

[∫ 1
a1

(b1−a1) db1

]
da1+

+
N−1∑
u=1

kug(u)
∫ 1
0 [

∫ 1
a1

sin(uπb1)−sin(uπa1)
πu db1]da1.

(32)

After calculating the first definite integral (which is equal 1/6) and placing concrete
values of ku using (4) we can obtain from (32):

msel1=
1
3

√
1
N

g (0)+2
√

2
N

N−1∑

u=1

g(u)
1

πu

∫ 1

0
[
∫ 1

a1

[ sin (uπb1)−sin(uπa1)]db1]da1.

(33)
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The definite integral in (33) can be expressed as follows:

∫ 1

0
[
∫ 1

a1

[sin (uπb1)−sin(uπa1)]db1]da1= −cos(uπ)
uπ

+
2sin(uπ)

u2π2
− 1

uπ
. (34)

The formula (34) is defined for discrete values of u = 1, . . . , N−1, thus it can be
evaluated as follows:

−cos(uπ)
uπ

+
2sin(uπ)

u2π2
− 1

uπ
=

{
− 2

πu∧u= 2, 4, ...
0 ∧u= 1, 3, . . .

. (35)

Using (33) and (35) the 1-dimensional mean selectivity estimator can be obtained as
follows:

msel1=
1
3

√
1
N

g (0)−2
√

2
N

∑
u=2,4,..

g(u)
2

π2u2
, (36)

msel1=
√

1
N

[
A0g (0)+A1

∑
u=2,4,...

g(u)
1
u2

]
(37)

where A0, A1 are some constants.

5. DCT-based approximate mean selectivity estimator for 2-dimensional case

Specially handling cases where v or u is equal to 0 (similarly to (28)-(31)), the
2-dimensional selectivity estimator can be obtained as follows:

sel2 (Q2)=
√

2
N

√
2
M
{k0k0g (0, 0) (b1−a1) (b2−a2)+

+
∑

u=1,...,N−1
[kuk0g(u, 0)

sin (uπb1)− sin (uπa1)
πu

(b2−a2) ]+

+
∑

v=1,...,M−1
[k0kug (0,v) (b1−a1)

sin (vπb2)− sin (vπa2)
πv

]+

+
∑

u= 1, . . . ,N−1
v= 1, . . . ,M−1

[kukvg(u,v)
sin (uπb1)− sin (uπa1)

πu

sin (vπb2)− sin (vπa2)
πv

]}.

(38)
Similarly to (31)-(37) forms applied for 1-dimensional case, we can find msel2 – the
2-dimensional mean selectivity estimator from (22) and (38):
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msel2=
√

1
N

√
1
M {A00g (0, 0)+A10

∑
u=2,4,... g (u, 0) 1

u2 +

+A01
∑

v=2,4,... g (0, v) 1
v2 +A11

∑
u= 2, 4, . . .
v= 2, 4, . . .

g (u, v) 1
u2

1
v2 } (39)

where A00, A10, A01, A11 are some constants.
The 2-dimensional approximate mean selectivity estimator based only on Z is de-

fined as follows:

ˆmsel2(Z) =
√

1
N

√
1
M
{A00g (0, 0)+A10

∑
u=2,4,...

g (u, 0)
1
u2

+

+A01

∑
v=2,4,...

g (0, v)
1
v2

+A11

∑
u= 2, 4, . . .
v= 2, 4, . . .
(u,v) ∈Z

g (u, v)
1
u2

1
v2
}. (40)

The formula ˆmsel2 (U × V ) = msel2 is always true.
Taking into account an assumption for boundaries of the sampling zone Z:

(u, 0)∈Z= > max (u)=N−1 and (0,v)∈Z= > max (v)=M−1, (41)

only the last addend in (40) is relevant (i.e. only the last addend in (40) is different from
the last addend in (39)).

6. DCT-based asymptotic approximate mean selectivity estimator for
2-dimensional case

For large values of N and M (N À 1 ∧M À 1) we can assume that u and v be-
come continuous variables and sums in (39) can be approximated by definite integrals.
Then the 2-dimensional asymptotic mean selectivity estimator is defined as follows:

amsel2=
√

1
N

√
1
M {A00g (0, 0)+B10

∫
1≤u≤N−1 g (u, 0) 1

u2 du+

+B01
∫
1≤v≤M−1 g (0,v) 1

v2 dv+B11
∫ ∫

(u,v) ∈U × V
∧u≥ 1
∧ v≥ 1

g (u,v) 1
u2

1
v2 dudv}.

(42)

where B10, B01, B11 are some constants.
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Similarly, for large N and M we can obtain from (40) the 2-dimensional asymptotic
approximate mean selectivity estimator:

ˆamsel2(Z) =
√

1
N

√
1
M
{A00g (0, 0)+B10

∫

1≤u≤N−1
g (u, 0)

1
u2

du+

+B01

∫

1≤v≤M−1
g (0,v)

1
v2

dv+B11

∫ ∫

(u,v) ∈Z
∧u≥ 1
∧ v≥ 1

g (u,v)
1
u2

1
v2

dudv}. (43)

7. Assumption for DCT spectrum

Till now there was no assumptions for a distribution of attribute values. Let’s as-
sume the flat DCT spectrum in our further consideration. This is the worst case for
the described method of DCT-based selectivity estimation because there is no energy
compaction for this spectrum. This assumption is equivalent to formula:

g (u,v)≡C= const ∧ C > 0. (44)

8. The criterion of error-optimal sampling zone

The asymptotically optimal shape of Z is obtained for the least value of error of
asymptotic mean selectivity estimator defined in (27). The criterion of finding the best
shape of 2-dimensional sampling zone Z is defined as follows:

inf
Z

[AMErr(Z)]= inf
Z

∣∣∣amsel2− ˆamsel2(Z)
∣∣∣ (45)

∧ size (Z)=K (46)

where K is predetermined size of set Z. A space needed for storing DCT coefficients in
memory is linearly depended on K.
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Using (42) and (43) in (45) we obtain:

inf
Z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣





√
1

NM
B

11

∫ ∫

(u,v) ∈U × V
∧u≥ 1
∧v≥ 1

g (u,v)
1
u2

1
v2

dudv −
√

1
NM

B11

∫ ∫

(u,v) ∈Z
∧u≥ 1
∧v≥ 1

g (u,v)
1
u2

1
v2

dudv





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(47)

The expression
√

1
NM B

11

∫ ∫

(u,v) ∈U × V
∧u≥ 1
∧ v≥ 1

g (u,v) 1
u2

1
v2 dudv doesn’t depend on Z so

(47) can be reformulated:

inf
Z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣





C0 −
√

1
NM

B11

∫ ∫

(u,v) ∈Z
∧u≥ 1
∧ v≥ 1

g (u,v)
1
u2

1
v2

dudv





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(48)

where C0 is some constant.

Because g(u, v) >0 what results from (44), the formula (48) is equivalent to:

sup
Z





+
√

1
NM

B11

∫ ∫

(u,v) ∈Z
∧u≥ 1
∧ v≥ 1

g (u,v)
1
u2

1
v2

dudv





. (49)
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(49) can be simplified as:

sup
Z





∫ ∫

(u,v) ∈Z
∧u≥ 1
∧ v≥ 1

g (u,v)
1
u2

1
v2

dudv





. (50)

Because some pairs (uv) ∈ Z where u = 0 or v = 0, don’t belong to domain of definite
integral in (50) we introduce set Z∗ = {(u, v) ∈ Z ∧ u ≥ 1 ∧ v ≥ 1}. Z∗ is a subregion
of the optimal Z satisfying (50), i.e. Z∗ ⊂ Z. A constant K∗ denotes a size of Z∗ where
K∗ <K.

The criterion in (50) and (46) can be formulated using Z∗ as finding the optimal
shape of Z∗ satisfying (51) subject to the constraint (52):

sup
Z∗

{
∫ ∫

(u,v)∈Z∗

g (u,v)
1
u2

1
v2

dudv (51)

∧ size (Z∗)=K∗ . (52)

Let’s define a function v(u) which defines the shape of Z∗ . An example of the function
v(u) is shown on Fig. 3. The interval [1, umax] is a domain of function v(u). The v(u)

satisfies the condition:
∀

u ∈ [1, umax]
v (u) ≥ 0.

Fig. 3. Example of sampling zone Z∗

The boundary conditions for Z∗ are:

v (1)=vmax∧ vmax ≤ M−1∧ v ( umax) = 1∧umax≤N−1 (53)
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(concrete values of vmax and umax have no meanings for the proof).
Size of Z∗can be obtained as follows:

size (Z∗) =
∫ umax

1
v (u) du=K∗. (54)

The maximized cost functional J can be defined as follows:

J=
∫ ∫

(u,v)∈Z∗

g (u,v)
1
u2

1
v2

dudv=
∫ umax

1
[
∫ v(u)

1
g(u,v)

1
u2v2

dv]du. (55)

The problem of finding optimal v(u) can be solved basing on the classic isoperimetric
problem [2] by finding the extremum of J defined in (55) subject to constraints form
(54).

9. The method of finding the shape of optimal sampling zone

The problem of finding optimal shape of Z∗ i.e. v(u) will be solved by using the
method of Lagrange multipliers [2].

The formula (54) can be rewritten as:
∫ umax

1
F1

(
u,v,v

′)
du=K∗= const (56)

where
F1

(
u,v,v

′)
=v. (57)

The definition of J from (55) can be rewritten as:

J=
∫ umax

1
F0

(
u,v,v

′)
du (58)

where

F0

(
u,v,v

′)
=

∫ v(u)

1
g(u,v)

1
u2v2

dv. (59)

Let’s define Lagrange function as follows:

L (v)=
∫ umax

1
[F0

(
u,v,v

′)
+λF1(u,v,v

′
)]du (60)

where λ is a Lagrange multiplier.
The Euler’s equation required for obtaining the extremum of L is defined as follows:

∂F0

∂v
− d

du

(
∂F0

∂v′

)
+λ

[
∂F1

∂v
− d

du

(
∂F1

∂v′

)]
= 0. (61)
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Neither F0 nor F1 nor depends on v’ so the Euler’s equation (61) can be simplified as:

∂F0

∂v
+λ

∂F1

∂v
= 0. (62)

Solving the equation (62) allows to find the optimal v(u).

10. Obtaining asymptotically error-optimal shape of sampling zone

Referencing to (59) and (44) we find:

F0

(
u,v, v

′)
=C

v∫

1

1
u2v2

dv=C
1
u2

(
1−1

v

)
. (63)

Placing ∂F0
∂v = 2C

u2v2 and ∂F1
∂v = 1 in (62) we obtain:

2C

u2v2
+λ= 0, (64)

u2v2 = −2C

λ
= const. (65)

Let’s define the some constant:
C1= −2C

λ
(66)

Referencing (65) and (66) and both u and v are positive we can find:

uv=
√

C1= const. (67)

Hence the reciprocal shape of sampling zone was found as:

v (u)=
const

u
. (68)

The last equation finishes the presented proof. It is the main goal of this work. This is
the confirmation of experimental results from the previous work that for high resolution
of spectrum the reciprocal shape of sampling zone (Fig. 2.c) is error-optimal.

11. Conclusions

Effective database query processing requires an estimation of size of a query result
before this query is actually executed. This is needed for choosing the best data access
method. The early estimation of the query result size is performed by the DBMS cost-
query optimizer. The optimizer obtains so-called selectivity factor – the fraction of table
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rows satisfying a query condition. Selectivity calculation methods require an estima-
tor of probability density function (PDF) of distribution of table attribute values. For a
range query condition based on attributes with continuous domain the selectivity can be
obtained as a value of definite integral of PDF (e.g. (2)). A space-efficient multidimen-
sional non-parametric estimator of multivariate PDF is required for obtaining selectivity
for complex query conditions involving many attributes.

Among many methods of a representation of multidimensional distribution there
is the space-efficient unconventional one, based on Discrete Cosine Transform (DCT)
proposed in [9]. In this method the selectivity estimator is calculated using only rel-
evant coefficients of multidimensional DCT spectrum representing a joint distribution
of attribute values. Only DCT coefficients belonging to a so-called sampling zone are
used in the selectivity estimation. Hence the selectivity calculation is based on a lossy
compressed DCT representation of distribution. Lee at al. considered several types of
sampling zones (e.g. Fig .2). They experimentally showed that a sampling zone with
a reciprocal shape gives the least relative error value for given predetermined size of
this sampling zone (Fig. 2.c). The sampling zone‘s size is a critical parameter because
either a size of space needed for storing DCT-based representation of distribution or a
complexity of the algorithm of the selectivity estimations linearly depends on it.

This paper is devoted to the proof of the theorem that the reciprocal shape of sam-
pling zone is asymptotically error-optimal i.e. for high resolutions of DCT spectrum
applying the reciprocal zone gives the least value of selectivity estimation error subject
to predetermined size of the sampling zone. This proof was presented in sections 3∼10.

The main contribution of this work is the theoretical confirmation of some only ex-
perimental results from the previous work. The proof was carried out under some re-
strictions: 2-dimensional case, a flat DCT spectrum, an assumed definition of selectivity
estuation error. The proof is based on calculus of variations, method of Lagrange multi-
pliers and isoperimetric problem.
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Asymptotycznie optymalny kształt strefy próbkowania w metodzie szacowania
selektywności zapytań, opartej na dyskretnej transformacie kosinusowej

Streszczenie

Szacowanie selektywności zapytań jest krytyczne dla efektywnej realizacji zapy-
tań w systemach zarządzania bazami danych. Sposób realizacji zapytania zależy od
wstępnego oszacowania rozmiaru danych spełniających kryteria zapytania. Takie osza-
cowanie pozwala wybrać metodę dostępu do danych użytą później podczas realizacji
zapytania. Selektywność dla zapytań jednotablicowych to stosunek liczby wierszy speł-
niających kryteria zapytania do liczby wszystkich wierszy tablicy. Dla zakresowych
warunków zapytania, określonych na atrybutach z ciągłą dziedziną, selektywność jest
całką oznaczoną z funkcji gęstości prawdopodobieństwa (PDF), określającej rozkład
wartości tego atrybutu. Dla złożonych warunków zapytania, opartych na kilku atrybu-
tach, istnieje potrzeba użycia nieparametrycznego estymatora wielowymiarowej PDF,
którego reprezentacja powinna być oszczędna pod względem zajętości pamięci. Jedno
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ze znanych podejść do konstrukcji takiego estymatora oparte jest na dyskretnej trans-
formacie kosinusowej (DCT) – tzn. widmie z histogramu wielowymiarowego. Włas-
ność kompakcji energii pozwala na pominięcie nieznaczących współczynników widma
DCT bez istotnej utraty oszacowania selektywności. Obszar znaczących współczyn-
ników widma nazywany jest strefą próbkowania. Wyniki prac eksperymentalnych in-
nych autorów wskazują, że dla zadanego rozmiaru reprezentacji widma, optymalną
strefą próbkowania (kształtem strefy o najmniejszym błędzie oszacowania selekty-
wności) jest tzw. strefa odwrotnie proporcjonalna. Głównym wynikiem tego opracowa-
nia jest teoretyczne potwierdzenie tych eksperymentów. Artykuł przedstawia dowód
twierdzenia o asymptotycznej optymalności strefy odwrotnie proporcjonalnej dla przy-
padku dwuwymiarowego. Dowód opiera się na elementach rachunku wariacyjnego i za-
gadnieniu izoperymetrycznym.


