
Theoretical and Applied Informatics
ISSN 1896–5334

Vol.24 (2012), no. 1
pp. 67–94

DOI: 10.2478/v10179-012-0004-5

Approximation of values of prolate spheroidal wave function

MICHAL CHOLEWA

Institute of Theoretical and Applied Informatics
Polish Academy of Science

ul. Bałtycka 5, Gliwice, Poland
mcholewa@iitis.pl

Received 11 November 2011, Revised 28 November 2011, Accepted 26 December 2011.

Abstract: In this article we analyse various methods of value approximation for Prolate Spheroidal
Wave Functions (PSWF). As PSWFs are not given by explicit formula, for any application their values
need to be calculated based on their properties and connection to other functions. We will focus on three
approaches – Legendre polynomials, Eigenvalues of Matrix Operators and Hermite functions. We then
create an implementation and test its effectiveness by using is as a base for bandlimited signal approximation
algorithm.

Keywords: Prolate Spheroidal Wave Functions,

1. Introduction

Prolate spheroidal wave functions create an orthonormal base for space of bandlim-
ited signals. Approximation algorithm for band-limited signals based on prolate base
coordinates has been proven optimal (in case where both error and jitter are equal to 0)
and resilient to both error and jitter in pessimistic case (in [1]). That set of properties
make prolate spheroidal wave functions a good option for approximation algorithms.
However, for that an integral operator is needed – and for that operator to be applicable,
we need to be able to know the value of PSWF in given x. As prolate spheroidal wave
functions are not given by explicit formula, an approximation method is needed. There
exist many methods of approximation PSWF value at given x. Natural method utilizes
well known connection between PSWFs and Legendre polynomials, but that technique
is not the only one. Some of them use Bessel functions ([3], [8]) and there are still pre-
prepared value tables ([2], [4]) in use, event though they have a major vice – the the user
has to use the same set of parameters that was used to generate the tables.

68

In [7] a solution based on eigenvalues of matrix operators, while in [9] authors base
their approximation on Hermite functions.

In this article, we will go through three different method of PSWF approximation,
then we will show and test an implementation of one of them.

This article is organized as follows: in section 2 we will conduct a short introduction
concerning Prolate Spheroidal Wave Functions, in sections 3-5 we will focus on different
approaches to the problem. Finally in section 6 we show and test implementation of
PSWF approximation algorithm.

2. Prolate spheroidal wave functions (PSWFs)

Prolate Spheroidal Wave functions as an orthonormal base of bandlimited signal
space give many possibilities for construction of approximation algorithms. Their prop-
erties are widely discussed in [6], [10] and [3], while in [5] Lindquist and Wager give
practical application for fMRI signals.

In this section we will state only basics of their characteristic needed for purpose of
approximation algorithms.

It is known that for every positive number c the values of parameter κ, so that differ-
ential equation

∀t∈(−1,1)(1− t2)u′′(t)− 2tu′(t) + (κ− c2t2)u(t) = 0, (1)

has non-zero solution, can be ordered to form increasing sequence

0 < κ0(c) < κ1(c) < κ2(c) < . . .

moreover, for κ = κk(c) there exists an unique function Sk(c, ·) : [−1, 1] ← R satisfy-
ing 1 so that Sk(c, 0) = Pk(0), where Pk is k-th Legendre polynomial, k = 0, 1, 2,

Functions Sk(c, ·) have the following properties:

1. Each function Sk(c, t) is continously dependant on c and for arbitrary c can be
expanded to entire function of t ∈ C.

2. Functions Sk(c, ·) are orthogonal in [−1, 1] and complete in space L2(−1, 1).

3. Each function Sk(c, ·) has exactly k simple zeroes on (−1, 1).

4. Functions Sk(c, ·) satisfy eigenequations:
∫ 1

−1
eicstSk(c, s)ds = 2ikαk(c)Sk(c, t)

and ∫ 1

−1

sin c(t− s)
π(t− s)

Sk(c, s)ds = λkSk(c, t)

69

where λk = λk(c) = 2c
π |αk(c)|2 and λk(c) ↘ 0 with k →∞.

Knowing this, we put
c = Ω0τ

and define Prolate Spheroidal Wave Functions ψk : [−τ, τ] → R as follows:

ψk(t) = λk(c)1/2

(∫ 1

−1
Sk(c, s)2ds

)−1/2

Sk(c, t/τ) (2)

having them defined this way, we can present (1)− (4) for ψk as

(A) Each function ψk(t) depends continuously of Ω0 and τ , and for arbitrary Ω0 and
τ can be expanded to entire function t ∈ C;

(B) Functions φk(t) = λ
−1/2
k ψk are orthogonal and complete in L2(−τ, τ);

(C) Each function ψk has exactly k simple zeroes

ξk,1, ξk,2, . . . , ξk,k

on (−τ, τ);

(D) Functions ψk satisfy eigenequations
∫ τ

−τ
e

�
iΩ0ts

τ

�
ψk(s)ds = 2ikταkψk(t)

and ∫ τ

−τ

sinΩ0(t− s)
π(t− s)

ψk(s)ds = λkψk(t)

where αk = αk(Ω0τ), λk = λk(Ω0τ) and λk ↘ 0 with k →∞.

Substituting s = τΩ−1
0 ω in first equation (D), we get

ψk(t) =
∫ Ω0

−Ω0

eiωtXk(ω)dω (3)

where Xk(ω) = (2ikΩ0αk)−1ψk(τΩ−1
0 ω). using second equation (D) and the fact, that

∫ ∞

−∞

sinΩ0(t− s)
π(t− s)

f(t)dt = f(s), ∀f∈B(Ω0,τ)

we get

(ψk, ψl) =
∫ ∞

−∞
ψk(t)ψl(t)dt =

70

1
λk

∫ τ

−τ

(∫ ∞

−∞

sinΩ0(t− s)
π(t− s)

ψl(t)dt

)
ψk(s)ds = (4)

1
λk

∫ τ

−τ
ψl(s)ψk(s)ds =

1
λk

(ψl, ψk)

Where (·, ·) i 〈·, ·〉 are dot products respectively in L2(−∞,∞) and L2(−τ, τ).
Equivalnces 2 i 3, together with (B) give us:

(E) Each function ψk, k = 0, 1, . . . is of energy 1 and is bandlimited to Ω0. Moreover,
set {ψk}∞k=0 is orthonormal in L2(−∞,∞) and complete in B(Ω0, τ).

Above properties make PSWFs an effective tool to approximate bandlimited signals.
From (B) and (E) we easily can get representation for B(Ω0, τ):

(F) B(Ω0, τ) =
{

f ∈ L2(−τ, τ) : Σ∞k=0
|〈f,φk〉|

λk
< ∞

}

Among functions in B(Ω0, τ), orthogonal to ψ0, ψ1, . . . , ψk−1, function ψk has
highest energy concentration on (−τ, τ), equal to λk(c), i.e.

λk(c) = sup

{
‖f‖2

2,τ

‖f‖2
2,∞

: f ∈ B(Ω0), (f, ψj) = 0, j = 0, 1, . . . , k − 1

}
. (5)

Eigenvalues λk(c) satisfy following inequalities:

(G) λ[2c/π]−1 ≥ 1/2, λ[2c/π]+1 ≤ 1/2

oraz

(H) e−1/12 πc
2Ik(k+1/2)

(
c

2πk

)2k
< λk(c) < 2c

π2k2

(
ec
2k

)2
k,

where Ik =
∫∞
−π/2

(
sin x

x

)2k
dx and k ≥ 2c/π

3. Legendre polynomials

This approach utilizes natural link between PSWF and Legendre polynomials, stated
in definition as

Sk(c, 0) = Pk(0), (6)

where Pk(0) is k-th Legendre polynomial. Legendre polynomials are orthogonal base
of analytical functions, thus any PSWF can be expanded as

ψn =
∞∑

i=0

αn
i Pi. (7)

where Pi is normalized Legendre polynomial. This approach reduces problem of ap-
proximating PSWF values to computation of value of sequence of polynomials.

71

3.1. Preliminaries

Definition 1 Let x ∈ R and let n ∈ N. By Legendre polynomials we will understand
functions functions Pn given as:

Pn+1(x) =
2n + 1
n + 1

xPn(x)− n

n + 1
Pn−1(x) (8)

with P0(x) = 1 and P1(x) = x.

Above defined Legendre polynomials have the following properties

Fact 1 Let Pk be the k-th Legendre polynomial for k = 0, 1, Then:

1.

(1− x2)
d2Pk(x)

dx2
− 2x

dPk(x)
dx

+ k(k + 1)Pk(x) = 0 (9)

2. Pk(1) = 1

3.
1∫

−1

Pk(x)Pj(x)dx = 0 (10)

for i 6= j.

Even though as above fact states, Legendre polynomials are orthogonal, on 〈−1, 1〉,
they are not orthonormal. To be exact

1∫

−1

(Pk(x))2dx =
1

n + 1/2
(11)

Normalizing them we get normalized Legendre polynomials Pn defined as:

Pn(x) = Pn(x) ·
√

n + 1/2 (12)

We will now prove the following lemma:

Lemma 1 For every integer k ≥ n,
∣∣∣∣∣∣

1∫

−1

xkPn(x)dx

∣∣∣∣∣∣
<

√
2

2k + 1
(13)

72

For every integer 0 ≤ k < n
∣∣∣∣∣∣

1∫

−1

xkPn(x)dx

∣∣∣∣∣∣
= 0 (14)

Proof:
We will begin with second part of the lemma.
Note, that deg(Pk) = k and that Legendre polynomials are linearly independent set

of polynomials with real coefficients. That means, that (P0, P1, . . . , Pk) is a base of
linear space of polynomials with degree not greater than k. Hence

xk =
k∑

i=0

αiPi. (15)

What follows, is
∣∣∣∣∣∣

1∫

−1

xkPn(x)dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1∫

−1

k∑

i=0

αiPiPn(x)dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

k∑

i=0

αi

1∫

−1

PiPn(x)dx

∣∣∣∣∣∣
= 0 (16)

since Pn, n = 0, 1, . . . are orthogonal.
Now we move to first part of the lemma.
From Cauchy-Schwartz inequality we have

∣∣∣∣∣
1∫
−1

xkPn(x)dx

∣∣∣∣∣ = |〈xk, Pn〉| ≤
√
‖xk‖‖Pn‖ =

=
1∫
−1

xk · xkdx =
√

2
2k+1

(17)

QED
Knowing, that PSWFs ψk, k = 0, 1, . . . are analytical functions in C, on interval

〈−1, 1〉, we can expand each ψk into Legendre sequence of the form

ψj(x) =
∞∑

k=0

βkPk(x) (18)

with coefficients βk fast converging to 0, as is stated in lemma below.

Lemma 2 Let Pn(x) be n-th normalized Legendre polynomial and a ∈ R. Then:

1∫

−1

eiaxPn(x)dx =
∞∑

k=k0

αk

1∫

−1

x2kPn(x)dx + i
∞∑

k=k0

βk

∫ 1

−1
x2k+1Pn(x)dx (19)

73

where

αk = (−1)k a2k

(2k)!
(20)

βk = (−1)k a2k+1

(2k + 1)!
(21)

k0 = bn/2c (22)

where b·c is an integer part. Moreover for every integer m ≥ be · |a|c+ 1,

∣∣∣∣∣∣

1∫

−1

eiaxPn(x)dx−
m−1∑

k=k0

αk

1∫

−1

x2kPn(x)dx− i
m−1∑

k=k0

βk

1∫

−1

x2k+1Pn(x)

∣∣∣∣∣∣
≤

(
1
2

)2m

.

(23)
In particular, for

n ≥ 2(be · |a|c+ 1) (24)

it gives ∣∣∣∣∣∣

1∫

−1

eiaxPn(x)dx

∣∣∣∣∣∣
<

(
1
2

)n−1

(25)

Proof (after [8]):
The formula (19) is comes directly from lemma 1 and Taylor expansion of eiax. To

prove (23), let us assume integer

m ≥ be · |a|c+ 1 (26)

and let

Rm =
∞∑

k=m

αk

1∫

−1

x2kPn(x)dx + i
∞∑

k=m

βk

∫ 1

−1
x2k+1Pn(x)dx. (27)

From lemma 1 and triangle inequality, we get

|Rm| ≤
∞∑

k=2m

(
|a|k
k!

·
√

2
2k + 1

)
<

∞∑

k=2m

|a|k
k!

(28)

From (26) we have

|a|
2m + k

<
|a|
2m

<
1
2e

<
1
2
. (29)

For m given by (26) and integer k > 0, we can rewrite (28) as

74

|Rm| < |a|2m

(2m)!
·
(

1 +
1
2

+
1
4

+ · · ·
)

< 2
|a|2m

(2m)!
(30)

from where we obtain (23) using Stirling formula.
Finally we get (25), putting

m = be · |a|c+ 1. (31)

QED
Using above lemma we can estimate the quality of approximation of PSWFs using

Legendre polynomials. Such estimation is given in following theorem proven by Xiao
in [8] (without loss of generality, wce can assume that τ = 1).

Theorem 1 Let ψm(x) be m-th prolate spheroidal wave function with band limit c and
let Pk(x) be k-th normalized Legendre polynomial. Then, for every integer m ≥ 0 and
every real c > 0, if

k ≥ 2(be · cc+ 1) (32)

then ∣∣∣∣∣∣

1∫

−1

ψm(x)Pk(x)dx

∣∣∣∣∣∣
<

1
λm

·
(

1
2

)k−1

. (33)

Moreover, for every ε > 0, if

k ≥ 2(be · cc+ 1) + log2(1/ε) + log2(1/λm), (34)

then ∣∣∣∣∣∣

1∫

−1

ψm(x)Pk(x)dx

∣∣∣∣∣∣
< ε. (35)

Proof:
Obviously

∣∣∣∣∣∣

1∫

−1

ψm(x)Pk(x)dx

∣∣∣∣∣∣
=

1
|λm|

∣∣∣∣∣∣

1∫

−1

ψm(x)

1∫

−1

eicxtPk(t)dt

dx

∣∣∣∣∣∣
<

<
1
|λm|

1∫

−1

|ψm(x)| ·
∣∣∣∣∣∣

1∫

−1

eicxtPk(t)dt

∣∣∣∣∣∣
dx. (36)

75

Putting
a = cx (37)

And knowing that prolate spheroidal wave functions have unit norm, so

1∫

−1

|ψm(x)|dx ≤
√

2, (38)

Together with formula 36 and lemma 2 it gives
∣∣∣∣∣∣

1∫

−1

ψm(x)Pk(x)dx

∣∣∣∣∣∣
<

1
|λm| ·

(
1
2

)k−1
1∫

−1

|ψm(x)|dx ≤ 1
|λm| ·

(
1
2

)k−1/2

. (39)

Now, putting k ≥ 2(be · cc+ 1) + log2(1/ε) + log2(1/λm) we get

1
λm

· (1
2

)k−1 ≥ 1
λm

· (1
2

)2(be·cc+1)+log2(1/ε)+log2(1/λm)−1 =

= 1
λm

· (1
2

)2be·cc+1 · ε · λm ≥ ε
(40)

Hence, for assumed k we have
∣∣∣∣∣∣

1∫

−1

ψm(x)Pk(x)dx

∣∣∣∣∣∣
< ε. (41)

QED

3.2. Approximation

In previous section, we provided boundaries fo coefficients αk in expansion

ψj(x) =
∞∑

k=0

αj
kPk(x) (42)

Now, we will focus on algorithm to calculate those coefficients.
Using (42) in differential equation

(1− x2)ψ
′′
(x)− 2xψ′(x) + (χj − c2x2)ψ(x) = 0, (43)

and with recursive formula for Legendre polynomials

Pn+1(x) =
2n + 1
n + 1

xPn(x)− n

n + 1
Pn−1(x) (44)

76

and differential equation

(1− x2)
d2Pk(x)

dx2
− 2x

dPk(x)
dx

+ k · (k + 1)Pk(x) = 0 (45)

we get

(k+1)(k+2)
(2k+3)(2k+5) · c2 · αj

k+2 +
(
k(k + 1) + 2k(k+1)−1

(2k+3)(2k−1) · c2 − χj

)
· αj

k

+ k(k−1)
(2k−3)(2k−1) · c2 · αj

k−2 = 0.
(46)

We want, however, to expand prolate spheroidal weave functions in the base of normed
Legendre polynomials

ψj(x) =
∞∑

k=0

βj
k · Pk(x) (47)

where Pk(x) = Pk(x) ·
√

k + 1/2. Combining norming formula with recursion 46 we
get similar equation but for βj

k:

(k+1)(k+2)

(2k+3)
√

(2k+5)(2k+1)
· c2 · βj

k+2 +
(
k(k + 1) + 2k(k+1)−1

(2k+3)(2k−1) · c2 − χj

)
· βj

k

+ k(k−1)

(2k−1)
√

(2k−3)(2k+1)
· c2 · βj

k−2 = 0.
(48)

We can now put above recursion in the matrix form. If for every j =, 0, 1, · · · we put βj

as
βj = (βj

0, β
j
1, β

j
2, · · ·), (49)

then the following fact is true

Fact 2 Coefficients χi are eigenvalues and vectors βi - corresponding eigenvectors of
the operator l2 → l2 given as a symmetric matrix A, where

Ak,k = k(k + 1) +
2k(k + 1)− 1

(2k + 3)(2k − 1)
· c2 (50)

Ak,k+2 =
(k + 1)(k + 2)

(2k + 3)
√

(2k + 5)(2k + 1)
· c2, (51)

Ak+2,k =
(k + 1)(k + 2)

(2k + 3)
√

(2k + 5)(2k + 1)
· c2, (52)

for every k = 0, 1, . . ., with all remaining elements of the matrix A equal to 0.

77

This fact allows us to rewrite recursion (48) as

(A− χj · I)(βj) = 0, (53)

Having constructed matrix A, we can formulate the algorithm of evaluating the value
of j-th prolate spheroidal wave function ψj(x) in the following manner:

• We generate first k rows and columns of matrix A, where k is given by inequality
(34).

• We calculate eigenvectors {βj} and corresponding eigenvalues {χj} from A

• Obtained values of βj
0, β

j
1, . . . can be used to get ψj(x) using expansion

ψj(x) =
∑∞

k=0 βj
k · Pk(x)

4. Eigenvalues of matrix operator

This approach to approximation of values of prolate spheroidal wave functions, pro-
posed in [7], utilizes their characteristic as orthonormal system that maximizes energy
concentration on given interval [τ, τ], defining φ0 as function of total energy ‖φ0‖2 = 1,
maximizing the formula

ρ =

∫ τ
−τ |f(t)|2dt∫∞
−∞ |f(t)|2dt

. (54)

Each following function φk must also maximize (54), being at the same time orthogonal
to {φi}k−1

i=0 .

4.1. Introduction

Let f be a function with band limited by Ω. Using Shannon sampling theorem we
can represent such functions as

f(t)−
∞∑

n=−∞
fnS(t− n) (55)

where S is a sinc function, S(t) = sin(Ωt)
Ωt , and fn - coefficients in lin{S(· − n)}∞n=−∞

(where by lin{fi}∞i=−∞ we understand space spanned on functions fi)- orthonormal base
of BΩ. Substituting (55) to (54), we get

ρ =

∑∞
n=−∞ fn

∑∞
k=−∞ fk

∫ τ
−τ S(t− n)S(t− k)dt

∑∞
n=−∞ fn

∑∞
k=−∞ fk

∫∞
−∞ S(t− n)S(t− k)dt

, (56)

78

where obviously, following from Parseval equation for orthonormal base {S(· −
n)}∞n=−∞ of space BΩ with product l2(BΩ) we get

∞∑
n=−∞

fn

∞∑

k=−∞
fk

∫ τ

−τ
S(t− n)S(t− k)dt =

∞∑
n=−∞

|fn|2. (57)

Now, let us define infinite-dimensional, symmetric, real matrix

Aτ = [aτ (n, k)] =

τ∫

−τ

S(t− n)S(t− k)dt

 , (58)

which will allow us to show ρ as

ρ =
〈f, Aτ f〉
〈f, f〉 , (59)

where by f we understand a sequence {f(n)}, and dot product as product in l2(BΩ). We
will use the same symbol Aτ to refer to operator on l2(BΩ) corresponding to matrix Aτ .

This matrix is positive defined, as dot product in numerator (59),

〈f, Aτ f〉 =
∫ τ

−τ
|f(t)|2dt (60)

is positive for non-zero f . This leads to following Lemma, stated in [7].

Lemma 3 Operator given by matrix Aτ has limited Schmidt norm

‖Aτ‖HS = Tr|Aτ |2. (61)

Proof:
Indeed,we notice, that following Schwartz inequality we have

[∫ τ

−τ
S(t− n)S(t− k)dt

]2

≤
∫ τ

−τ
S2(t− n)dt

∫ τ

−τ
S2(t− k)dt. (62)

Now, since

aτ (n, n) =
∫ τ

−τ
S2(t− n)dt =

∫ τ

−τ

sin2(π(t− n))
π2(t− n)2

dt <
2τ

π2(n2 − τ2)
(63)

for n2 > τ2, we can see, that
∞∑

n=−∞

∞∑

k=−∞
|aτ (n, k)|2 ≤

∞∑
n=−∞

∞∑

k=−∞
aτ (n, n)aτ (k, k) < ∞. (64)

QED
We can now state the following fact

79

Fact 3 Let Aτ be an operator on l2 given by (58); Aτ is self-adjoint, compact and
positive defined. Furthermore, its eigenvalues satisfied inequalities

1 > λ1 > λ2 > · · · > λn > · · · > 0. (65)

Next problem, which will be approached is maximalization of (59). It is a typical
optimalization theory problem, solved by finding maximum eignevalue of Aτ and cor-
responding eigenvector. Solving this problem we obtain a sequence φ0 = {φ0,k} and λ
so that

Aτφ0 = λφ0 (66)

and ‖φ‖ = 1 given norm on l2. Also λ is maximum value of ρ. From there, we move to
maximalization problem for (59) — function φ0 is its solution. Indeed, since

〈φ0, Aτφ0〉
〈φ0, φ0〉 =

〈φ0, λφ0〉
〈φ0, φ0〉 = λ (67)

where λ = max ρ. Each following function φk will be a sequence φk = {φk,n} orthog-
onal to all φi, i < k and maximizing (59). The sequence of functions {φk(t)} given

φk(t) =
∞∑

n=−∞
φk,nS(t− n) (68)

will also be pairwise orthogonal in L2(R), as transformation {φk,n} → φk is an isometry
between l2 i L2(R). Functions {φk(t)} are orthonormal base of linear space BΩ and are
solutions to maximalization problem (54), which, according to the fact theta PSWFs are
the only solution to this problem gives

Fact 4 Prolate spheroidal wave functions φk(t) can be represented as

φk(t) =
∞∑

n=−∞
φk,nS(t− n) (69)

where {φk,n} are eigenfunctions of discrete operator Aτ on l2 and

Aτ = [aτ (n, k)] =
[∫ τ

−τ
S(tin)S(t− k)dt

]
. (70)

Eigenvalues {λk} are given as λk =
∫ τ
−τ |φk(t)|2dt

We can also observe, that PSWFs are obtained from φk(t) by normalizing λk.

80

4.2. Approximation

Of course in practical application of this method we cannot use the whole matrix Aτ

as it is infinite-dimensional. The calculations utilizing the matrix and its eigenvectors
and eigenvalues have to be conducted on finite approximations,the most natural of which
is to truncate Aτ to limited dimension.

So, by Am
τ we will understand the matrix given as

Am
τ = [aτ (n, k)], |n| ≤ m, |k| ≤ m. (71)

We will use the same symbol to denote inifnite-dimensional matrix, being Am
τ with all

elements for |n| > m or |k| > m equal to 0. Inequality (63) allows us to find upper
bound on elements of Aτ :

|aτ (n, k)|2 ≤ aτ (n, n)aτ (k, k) ≤ 2τ

π2(n2 − τ2)
2τ

π2(k2 − τ2)
(72)

when |k| > τ and |n| > τ . Furthermore if there exists p, |p| > 1 so that |k| ≥ pτ and
|n| ≥ pτ , its easy to see, that

|aτ (n, k)| ≤ 2
π2(p2 − 1)τ

(73)

This leads to following bound

Fact 5 Let Aτ be given by (58) and Am
τ by (71) and let pτ > m. Then, maximum

difference between elements of Aτ and Am
τ (infinite-dimensional) is

em = |aτ (n, k)− am
τ (n, k)| ≤ 2

π2(p2 − 1)τ
. (74)

If we additionally assume, that

|p| >
√

1 +
2

πτε
(75)

for any ε > 0, then
em < ε (76)

Above fact shows, that increasing m, we can make em arbitrarly small and allows
the use of Am

τ as approximation of Aτ

5. Hermite functions

This approach to approximation is based on orthogonal base for band-limited signals,
constructed from Hermite functions. Similarly to legendre polynomials, they are given
by recursive equations, they make good base for approximating PSWF values for high Ω
– band limit. This solution was introduced in [9], here we will sum up its main results.

81

5.1. Introduction

Definition 2 Let n ∈ N and let x ∈ R. By n-th Hermite polynomial we will understand:

H0(x) = 1
H1(x) = 2x

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x)
(77)

In further part of this section we will utilize some properties of Hermite polynomials,
which we will state in following fact

Fact 6 Let n,m ∈ N and let Hn be n-th Hermite polynomial. Then:

A. Hn satisfies differential equation

H ′′
n(x)− 2xH ′

n(x) + 2nHn(x) = 0. (78)

B. System {Hn} is orthogonal on R with weight function e−x2
, i.e for n,m ∈ N

∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx =
√

π2nn!δnm, (79)

where δnm is Kroenecker delta.

C. Value of Hn(x) is bounded by

|Hn(x)| < n!2n/2 − [n/2]
[n/2]!

e2|x|
√

[n/2]. (80)

Base consisting of Hermite polynomials is orthogonal, yet to become orthonormal,
the polynomials must be scaled. We will be using scaled Hermite polynomials Ha

n(x),
where a is scale. We define them the following way

Definition 3 Let n ∈ N and let Hn(x) be n-th Hermite polynomial. Then, by scaled
Hermite polynomial with scale a ∈ R we will understand polynomials s ·Hn(x), ortho-
normal on R with weight function e−a2x2

, a > 0.
∫ ∞

−∞
e−a2x2

Ha
n(x)Ha

m(x)dx = δm,n. (81)

So

Ha
n(x) =

√
a

π1/4 · 2n/2 · (n!)1/2
·Hn(ax) (82)

and (following (78))

1
a2
· d2Ha

n(x)
dx2

− 2x
dHa

n(x)
dx

+ 2nHa
n(x) = 0. (83)

82

of course following above and (77) we can immediately get recursion between scaled
Hermite polynomial as

Ha
0 (x) =

√
a

(
1√
π

)1/2

Ha
1 (x) =

√
2a

(
1√
π

)1/2
ax

Ha
n(x) = ax

√
2
nHa

n−1(x)−
√

n−1
n Ha

n−2(x).

(84)

For scaled hermite polynomials, following recursions are true:

Fact 7 Let s 6= 0 and let Ha
n(x) be n-th scaled Hermite polynomial with scale a. Then,

for every n ∈ N

1.

xHa
n(x) =

1
a

√
n + 1

2
Ha

n+1(x) +
1
a

√
n

2
Ha

n−1(x), (85)

2.
x2Ha

n(x) = 1
a2

√
n+1

2
n+2

2 Ha
n+2(x) + 1

a2

(
n + 1

2

)
Ha

n(x)+

+ 1
a2

√
n
2

n−1
2 Ha

n−2(x),
(86)

3.
x4Ha

n(x) = 1
a4

√
(n + 1)(n + 2)(n + 3)(n + 4)Ha

n+4(x)

+ 1
a4

(
n + 3

2

) √
(n + 1)(n + 2)Ha

n+2(x)

+ 1
a4

3
4(1 + 2n + 2n2)Ha

n(x)

+ 1
2a4

√
(n− 1)n(2n− 1)Ha

n−2(x)

+ 1
4a4

√
(n− 3)(n− 2)(n− 1)nHa

n+4(x),

(87)

with assumption that Ha
n(x) ≡ 0 for n < 0.

Now, we can define Hermite functions based on Hermite polynomials

Definition 4 Let a > 0, a ∈ R and let Ha
n be n-th scaled Hermite polynomial with scale

a. By Hermite functions φa
0, φ

a
1, φ

a
2, . . . : R→ R we will understand functions given by

φa
n(x) = e−a2x2/2 ·Ha

n(x). (88)

Hermite functions posses properties which make them useful in PSWF approxima-
tion. Some of them we can state in following fact.

83

Fact 8 Let φa
0, φ

a
1, φ

a
2, . . . : R→ R be Hermite functions. Then

1. Dla n ≥ 1

xφa
n(x) =

1
a

√
n + 1

2
φa

n+1(x) +
1
a

√
n

2
φa

n−1(x). (89)

2. Dla m,n ≥ 0 zachodzi
∫ ∞

−∞
φa

m(x)φa
n(x)dx = δmn (90)

where δmn is Kroenecker delta.

3. For every f ∈ l2

f(x) =
∞∑

n=0

αnφa
n(x), (91)

where αn are given by formula

αn =
∫ ∞

−∞
f(x)φa

n(x)dx. (92)

Furthermore, if f is even, α2n+1 = 0∀n≥0, and if f is odd, α2n = 0∀n≥0. To
expansion (101) we will refer to as Hermite expansion.

5.2. Approximation

Let Gc be a differential operator (for c > 0) given as

Gc(ψ)(x) = −(1− x2)ψ′′(x) + 2xψ′(x) + c2x2ψ(x). (93)

Operator Gc is linear, self-adjoint and positive defined. The following theorem
comes directly as conclusion from fact (7).

Fact 9 Let a > 0, a ∈ R and let {φa
n} be a sequence of Hermite functions. Than for any

real and positive c and positive integer n

Gcφ
a
n(x) =

2∑

i=−2

dn,i · φa
n+2i(x), (94)

where

dn,0 =
1

4a2
(−3a2 + 2a4 + 2c2 − 2a2n + 4a4n + 4c2n− 2a2n2), (95)

84

dn,1 = − 1
2a2

(a2 − c)(a2 + c)
√

2 + 3n + n2, (96)

dn,2 =
1
4

√
(3 + n)(4 + n)(2 + 3n + n2) (97)

for n ≥ 0;

dn,−1 = − 1
2a2

(a2 − c)(a2 + c)
√
−n + n2 (98)

for n ≥ 2;

dn,−2 =
1
4

√
(−3 + n)(−2 + n)

√
−n + n2 (99)

for n ≥ 4. Moreover

d3,−2 = d2,−2 = d1,−2 = d0,−2 = d1,−1 = d0,−1 = 0. (100)

Now lets assume that ψc
m is eigenfunction of operator Gc. Of course for every a > 0 we

can expand ψc
m into Hermite expansion as follows

ψc
m(x) =

∞∑

n=0

αm
n φa

n(x), (101)

where αm
n depend on a and c. The following theorem (after [9]) illustrates dependencies

between them.

Theorem 2 Let χm be m-th eigenvalue Gc and let ψc
m be corresponding eigenfunction.

Moreover, let αm
0 , αm

1 , αm
2 , . . . be Hermite expansion coefficients (101) ψc

m. Then, for
n ≥ 0,

1
4

√−3 + n
√−2 + n

√−n + n2 · αm
n−4 − 1

2a2 (a4 − c2)

·√−n + n2 · αm
n−2 −

(
χm − 1

4a2 (−3a2 + 2a4 + 2c2 − 2a2n

+4a4n + 4c2n− 2a2n2)
)
· αm

n − 1
2a2 (a4 − c2)

√
2 + 3n + n2

·αm
n+2 + 1

4

√
3 + n

√
4 + n

√
2 + 3n + n2 · αm

n+4 = 0.

(102)

Proof:
Using Gc to both sides of (101) we get

Gc(ψc
m)(x) = Gc

(∞∑

n=0

αm
n φa

n(x)

)
=

∞∑

n=0

αm
n Gc(φa

n(x)). (103)

85

From fact (9) we know, that

Gc(φa
n(x)) =

2∑

i=−2

dn,i · φa
n+2i(x) (104)

for n ≥ 0 and di,n given in fact (9). Substituting above to (103) we get

Gc(φa
n(x)) =

∞∑

n=0

αm
n

2∑

i=−2

dn,i · φa
n+2i(x) =

∞∑

n=0

(
2∑

i=−2

αm
n dn,i

)
· φa

n+2i(x). (105)

On the other hand, since χm is eigenvalue of Gc and ψc
m – corresponding eigenfunction

Gc(ψc
m)(x) = χm ·

∞∑

n=0

αm
n · φa

n(x). (106)

Comparing those two equalities we get the thesis.
QED.
Using inverse power method in Mathematica, those recurrence can be translated into

following formula

ψc
m(x) =

∞∑

i=0

∞∑

k=0

αi,k

ck
· φ

√
c

m+4i(x) +
[m/4]∑

i=1

∞∑

k=1

βi,k

ck
· φ

√
c

m−4i(x) (107)

where αi,k and βi,k are functions of m.
Of course, it is in practice impossible to calculate the sum of infinite series, therefore

a truncated series will be used

ψc,n
m (x) =

n∑

i=0

n∑

k=0

αi,k

ck
· φ

√
c

m+4i(x) +
[m/4]∑

i=1

n∑

k=1

βi,k

ck
· φ

√
c

m−4i(x) (108)

which – introducing notation αn
i =

∑n
k=0

αi,k

ck and βn
i =

∑n
k=0

βi,k

ck can be rephrased as

ψc,n
m (x) =

n∑

i=0

αn
i · φ

√
c

m+4i(x) +
[m/4]∑

i=1

βn
i · φ

√
c

m−4i(x) (109)

Naturally, the question arises, how accurate this approximation is. This problem is
addressed in following fact which is proven in [9]

Fact 10 Sequence ψc,n
m is convergent to ψc

m uniformly in R as c →∞. Also

‖ψc,n
m (x)− ψc

m(x)‖[−∞,∞] = O

(
1

cn+1

)
(110)

Above theorem validates truncation as approximation method.
Use of Mathematica allows us also to approximate both αn

i and βn
i . For implemen-

tation in next section we decided to use n = 5 for our algorithm.

86

6. Implementation

Using the inverse power method allowed calculating also polynomial approxima-
tions of χm and ψc

m(x) for given c (shown in of [9]). The following implementation
of algorithm approximating values of PSWF for any given x is based on their results.
We introduce it having in mind lack of such algorithms in literature, and then test it on
sample function.

import numpy as np
import s c ipy as sp

def HermitePoly (n, x):
if (n == 0):

return 1.0
X = np. ar ray (range (n+1), dtype=f l o a t)
X[0] = 1.0
X[1] = 2.0 ∗ x
for i in range (2, n+1):

X[i] = 2.0 ∗ x ∗ X[i-1] - 2.0 ∗ (i-1.0)∗ X[i-2]
return X[n]

def ScaledHermi tePoly (n, scale, x):
HP=HermitePoly (n, scale ∗ x)
wsp = np.sqrt (scale) / (np.pi∗∗(0.25) ∗(2∗∗(n/2))∗
np. sqrt (sp. factorial(n)))
return HP ∗ wsp

def HermiteFunction (n, scale, x):
SHP=ScaledHermi tePoly (n, scale, x)
wsp = np. power (np. e, -(np. power (scale∗x, 2)/2))
return SHP ∗ wsp

def Alpha5 (i, c, m):
wynik = 0
if (i == 0):

wynik += 1
wynik -= (1/(2∗∗10∗ c ∗∗2))∗(12 + 22∗m + 23∗m∗∗2
+ 2∗m∗∗3 + m∗∗4)
wynik -= (1/(2∗∗11∗ c ∗∗3)) ∗(60 + 158∗m + 115
∗ m∗∗2 + 80 ∗ m∗∗3 + 5 ∗ m∗∗4 + 2 ∗ m∗∗5)
wynik -= ((1/(2∗∗22 ∗ c ∗∗4))∗(328032 + 891024∗m

87

+ 1127140∗m∗∗2 + 476156 ∗ m∗∗3 + 247887∗m∗∗4
+ 11768∗m∗∗5 + 3918∗m∗∗6 - 4∗m∗∗7 - m∗∗8))
wynik -= ((1/(2∗∗22∗ c ∗∗5)) ∗ (993120 + 3161552∗m
+ 3698884∗m∗∗2 + 3044356∗m∗∗3 + 874439∗m∗∗4
+ 363350∗m∗∗5 + 13566∗m∗∗6 + 3864∗m∗∗7 - 9∗m∗∗8
- 2∗m∗∗9))
return wynik

if (i == 1):
wynik -= ((1/(2∗∗5 ∗ c)) ∗
np. sqrt (sp. factorial (m+4)/ sp. factorial (m)) ∗
(1 + (1/(4∗ c)) ∗ (5 + 2∗m) + (1/(2∗∗11∗ c ∗∗2)) ∗
(4808 + 3470∗m + 669∗m∗∗2 - 10 ∗ m∗∗3 - m∗∗4) +
(1/(2∗∗13∗ c ∗∗3)) ∗ (46840 + 46762∗m + 16499∗
m∗∗2 + 1920∗m∗∗3 - 71∗m∗∗4 - 6∗m∗∗5) + (1/(3
∗2∗∗22∗ c ∗∗4)) ∗(212454624 + 263405280∗m +
128877012∗m∗∗2 + 29276108∗m∗∗3 + 2118049∗m∗∗4
- 151072∗m∗∗5 - 1030∗m∗∗6 + 20∗m∗∗7 + m∗ ∗ 8)))
return wynik

if (i == 2):
wynik += (1/(2∗∗11 ∗ c ∗∗2)) ∗
np. sqrt (sp.factorial(m+8)/sp.factorial(m)) ∗ (1 +
(1/(2∗ c)) ∗ (7 + 2∗m) + (1/(3∗2∗∗10∗ c ∗∗2)) ∗
(3738 + 19698∗m + 2833∗m∗∗2 - 18∗m∗∗3 - m∗∗4)+
(1/(3∗2∗∗9∗ c ∗∗3)) ∗ (70716 + 52218∗m + 13869
∗m∗∗2 + 1291∗m∗∗3 - 21∗m∗∗4 - m∗∗5))
return wynik

if (i == 3):
wynik -= (1/(3 ∗ 2∗∗16 ∗ c ∗∗3)) ∗
np. sqrt (sp.factorial(m+ 12)/sp.factorial (m)) ∗(1 +
4/(3∗ c)∗(9 + 2∗m) + 1/(2∗∗12∗ c ∗∗2) ∗ (154128 +
64022∗m + 7237∗m∗∗2 - 26∗m∗∗3 - m∗∗4))
return wynik

if (i == 4):
wynik += (1/(3 ∗ 2∗∗23 ∗ c ∗∗4)) ∗
np. sqrt (sp.factorial(m + 16)/sp.factorial(m)) ∗
(1 + 1/ c ∗ (11 + 2 ∗ m))
return wynik

if (i == 5):
wynik -= (1/(15 ∗ 2∗∗28 ∗ c ∗∗5)) ∗

88

np. sqrt (sp. factorial (m+20)/sp. factorial (m))
return wynik

return wynik

def Beta5 (i, c,m):
wynik = 0
if (i == 1):
wynik += ((1/(2∗∗5 ∗ c)) ∗
np. sqrt (sp. factorial (m)/sp. factorial (m-4)) ∗
(1 - 1/(4∗ c) ∗ (3 - 2∗m) + (1/(2∗∗11∗ c ∗∗2)) ∗
(2016- 2106∗m + 693 ∗ m∗∗2 + 6 ∗ m∗∗3 - m∗∗4) -
(1/(2∗∗13∗ c ∗∗3)) ∗ (14592 - 19788∗m + 10373∗m∗∗2
- 2144∗m∗∗3 - 41∗m∗∗4 + 6∗m∗∗5) +
1/(3∗2∗∗22∗ c ∗∗4))∗ (50908320 - 84318336∗m +
55101860∗m∗∗2 - 19514436∗m∗∗3 + 2707329∗m∗∗4 +
84528∗m∗∗5 - 11142∗m∗∗6 - 12∗m∗∗7 + m∗∗8))
return wynik

if (i == 2):
wynik += ((1/(2∗∗11∗ c ∗∗2)) ∗
np. sqrt (sp.factorial(m)/sp.factorial(m-8)) ∗ (1 -
1/(2∗ c) ∗ (5-2∗m)
+ (1/(3 ∗ 2∗∗10∗ c ∗∗2)) ∗ (20460 - 13982∗m +
2881∗m∗∗2 + 14∗m∗∗3 - m∗∗4) - (1/(3∗2∗∗9∗ c ∗∗3))
∗ (31056 - 28432∗m + 9880∗m∗∗2 - 1365∗m∗∗3 -
16∗m∗∗4 + m∗ ∗ 5)))
return wynik

if (i == 3):
wynik += ((1/(3∗2∗∗16∗ c ∗∗3)) ∗
np. sqrt (sp.factorial(m)/sp.factorial(m-12)) ∗ (1 -
3/(4∗ c) ∗ (7 - 2∗m) + 1/(2∗∗12∗ c ∗∗2) ∗
(97368 - 49474∗m + 7309∗m∗∗2 + 22∗m∗∗3 - m∗ ∗ 4)))
return wynik

if (i == 4):
wynik += (1/(3 ∗ 2∗∗23 ∗ c ∗∗4)) ∗
np. sqrt (sp. factorial (m)/sp. factorial (m-16))
∗ (1 - 1/ c ∗ (9-2∗m))
return wynik

if (i == 5):
wynik += (1/(15∗2∗∗28∗ c ∗∗5)) ∗
np. sqrt (sp. factorial (m)/sp. factorial (m-20))

89

return wynik
return wynik

def PSWFValue(n, x, c):
wynik = 0
scale = np. sqrt (c)
for i in range (6):
wynik += Alpha5 (i, c, n) ∗ HermiteFunction (n+4∗i,
scale, x)
limit = np.minimum (5, n/4)
for j in range (1, limit):
wynik += Beta5 (j, c, n) ∗ HermiteFunction (n - 4∗ j,
scale, x)
return wynik

def PSWFScaledValue (n, x, c, tau):
return 1/np. sqrt (tau) ∗ PSWFValue(n, x/tau, c)

Based on the above implementation, it is easy to construct the approximation algo-
rithm. To test it, we have applied it against a function g, where

g(x) =
20 sin(x), |x| ≤ π

0, |x| > π
(111)

We have used increasing number of PSWFs to approximate g. The effects can be
seen in 1.

Another function we can test our algorithm against will be

f(x) =
20, |x| ≤ 0.4

200(|0.5− |x||), 0.4 < |x| ≤ 0.5
0, |x| > 0.5

(112)

Choice of f shows us how the algorithm behaves being applied to scaled unit signal.
Figure 2 shows the results. As we can observe, approximation of f achieves high level
of precision relatively fast. Above 40 PSWF approximation changes are very small and
focus mainly around the points where the function f is not differentiable.

90

Fig. 1. Approximation of function g using increasing number of PSWF

91

Fig. 2. Aproksymacja funkcji f przy pomocy rosnacej liczby czolowych funkcji kulistych (PSWF)

92

7. Conclusions

Since Prolate Spheroidal Wave Functions are an effective tool for approximating
bandlimited signals and their definition does not allow any straightforward calculations,
a method for estimating their values was an important problem in digital signal process-
ing field. Three of them mentioned above utilize two different orthonormal basis of ban-
dlimites space and eignevalues of matrix operator and all of them yield error with very
low upper bound even for relatively low parameters, and therefore fast computations.

These three methods show that even though PSWFs are not explicitly represented,
they can be approximated with high accuracy, which makes them valid tool for bandlim-
ited signal processing.

References

1. D. Dąbrowska: Skutki zaburzeń miejsc i wartości odczytu próbek funkcji w optymalnym
odtwarzaniu. Czynić sprawiedliwość w miłości: Księga pamiątkowa od Uniwersytetu
Kardynała Stefana Wyszyńskiego dla Jego Eminencji Józefa Kardynała Glempa w dwudzi-
estą rocznicę posługi Prymasowskiej, pages 424-490, 2001.

2. C. Flammer: Spheroidal Wave Functions, Stanford University Press, Stanford, CA, 1957.

3. H. Volkmer: Spheroidal Wave Functions in Handbook of Mathematical Functions, Nat.
Bureau of StS. Applied Math Series, 2004.

4. S. Hanish, R.V. Baier, A.L. Van Buren, and B.J. King: Tables of Radial Spheroidal Wave
Functions, Volume 1: Prolate, m = 0. Tach. Rep. NRL 7088, Naval Research Labolatory,
1970.

5. M.A. Lindquist and T.D.Wager: Spatial smoothing in fmri using prolate spheroidal wave
functions. Human Brain mapping., 26:1276-1287, 2008.

6. D. Walter and X. Shen: Wavelets based on prolate spheroidal wave functions. Fourier
Anal. Appls., 10:1-26, 2004.

7. G.G. Walter and T. Soleski: A new, friendly method of computing prolate spheroidal wave
functions and wavelets. Appl. Comput. Harmon. Anal., 19(3):432-443, 2005.

8. H. Xiao: Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Prob-
lems, 17:805-838, 2001.

9. H. Xiao and V Rokhlin: High-frequency asymptotic expansions for certain prolate spher-
oidal wave functions. Journal of Fourier Analysis and Applications, 9:575-596, 2003.

10. H. Xiao, V. Rokhlin, and N. Yarvin: Prolate spheroidal wavefunctions, quadrature and
interpolation. J. Inverse Problems, 17:805-838, 2001.

93

Aproksymacja wartości czołowych funkcji kulistych

Streszczenie

W artykule analizujemy różnorakie metody przybliżania wartości czołowych funkcji
kulistych (Prolate Spheroidal Wave Functions – PSWF). Jako że funkcje te nie są zadane
poprzez bezpośredni wzór, konieczne do zastosowań obliczenie ich wartości w zadanych
punktach nie jest sprawą trywialną. Obecnie czyni się to w oparciu o ich związki z in-
nymi funkcjami, łatwiej obliczalnymi. W artykule koncentrujemy się nad trzema podejś-
ciami – poprzez naturalny związek czołowych funkcji kulistych z wielomianami Legen-
dre’a, przez funkcje Hermite’a oraz jako wartości własne operatorów macierzowych.

Następnie wskazujemy implementację przykładowego algorytmu obliczania
wartości PSWF i pokazujemy jego działanie na przykładzie przybliżeń sygnałów
o ograniczonym paśmie.

