
Theoretical and Applied Informatics
ISSN 1896–5334

Vol.24 (2012), no. 4
pp. 271–291

DOI: 10.2478/v10179-012-0017-0

Optimization of Overlay Computing Systems
with Many-to-Many Transmissions

KRZYSZTOF WALKOWIAK, ANDRZEJ KASPRZAK, KAROL ANDRUSIECZKO

Department of Systems and Computer Networks, Faculty of Electronics,
Wroclaw University of Technology,

Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Krzysztof.Walkowiak@pwr.wroc.pl

Received 9 May 2012, Revised 28 September 2012, Accepted 6 October 2012.

Abstract: The problem that this paper investigates, namely, optimization of overlay computing sys-
tems, follows naturally from growing need for effective processing and consequently, fast development of
various distributed systems. We consider an overlay-based computing system, i.e., a virtual computing sys-
tem is deployed on the top of an existing physical network (e.g., Internet) providing connectivity between
computing nodes. The main motivation behind the overlay concept is simple provision of network func-
tionalities (e.g., diversity, flexibility, manageability) in a relatively cost-effective way as well as regardless
of physical and logical structure of underlying networks. The workflow of tasks processed in the comput-
ing system assumes that there are many sources of input data and many destinations of output data, i.e.,
many-to-many transmissions are used in the system. The addressed optimization problem is formulated
in the form of an ILP (Integer Linear Programing) model. Since the model is computationally demanding
and NP-complete, besides the branch-and-bound algorithm included in the CPLEX solver, we propose ad-
ditional cut inequalities. Moreover, we present and test two effective heuristic algorithms: tabu search and
greedy. Both methods yield satisfactory results close to optimal.

Keywords: optimization, computing systems, overlay, heuristics

1. Introduction

Development of various IT systems commonly applied in almost all areas of human
activity generates huge amount of data, which analysis needs dedicated, high-power
computers. Therefore, in recent years distributed computing systems have been gain-
ing much popularity in many both academia and industry to enable effective processing
related to many areas, e.g., medical data analysis, collaborative visualization of large
scientific databases, climate/weather modeling, bioinformatics, experimental data ac-
quisition, financial modeling, earthquake simulation, astrophysics, etc. [15], [23], [24].

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



272

The distributed computing systems can be categorized as Grids using special dedi-
cated high-speed networks [24] and overlay-based systems using the Internet as an un-
derlying physical network [4], [18], [21]. In this work, we consider an overlay com-
puting system. The motivation is that overlay systems provide considerable network
functionalities (e.g., diversity, flexibility, manageability) in a relatively simple and cost-
effective way. Moreover, the overlays can be deployed regardless of physical and logical
structure of underlying networks. The considered computing system includes a set of
computing elements spread geographically (e.g., clusters or other hardware equipment).
The workflow of the system assumes that input data generated in a number of nodes is
transmitted to computing nodes that is responsible for processing the data and finally to
deliver the results to all destination nodes. It should be noted that such a workflow is
generic and can model many real applications applied in distributed manner, e.g., im-
age processing, data analysis, numerical computations. The criterion of the optimization
process is to minimize the operational cost (OPEX) of the system embracing expenses
related to two most important resources, i.e., processing equipment and network con-
nections.

The main innovation of our work – comparing to previous works related to Grid
optimization – is joint optimization of scheduling and network capacity in overlay-
based systems with many-to-many transmissions. Note that most of previous papers
concentrate on Grid optimization in the context of one-to-many transmissions in optical
networks (e.g., [5], [11], [20], [22]) or focus only on scheduling optimization with
one-to-many transmissions (e.g., [12]). It should be noted, that in this work we continue
our research on optimization of distributed systems. In our previous work [12], we
examined an optimization problem similar to the model formulated in this paper. The
major modification of the model considered in this work is joint optimization of task
scheduling and network capacity, while in [12] only the task allocation was analyzed,
since network capacity was given.

The main contributions of the paper are as follows. First, based on a new architecture
of the overlay computing system applying many-to-many transmissions, we formulate
a novel ILP optimization model of the system. Second, for the considered problem we
propose cut inequalities to improve performance of the branch-and-bound algorithm.
Third, two effective heuristic algorithms are created. Fourth, we report results of nu-
merical experiments run to examine effectiveness of developed heuristics as well as to
evaluate performance of the computing system in terms of various parameters.

The rest of the paper is organized in the following way. In Section 2, we describe
architecture of the considered overlay computing system, formulate a corresponding ILP
optimization model and introduce cut inequalities. Section 3 includes description of two
heuristics proposed to solve the problem. In Section 4, we present and discuss results
of numerical experiments. Section 5 describes related works. Finally, the last section
concludes this paper.

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



273

2. Optimization Model of Overlay Computing Systems

The optimization model presented in this section is constructed according to assump-
tions taken from real overlay computing systems and previous works. Moreover, the
model is generic, i.e., various computing systems, e.g. Grids, public resource computing
systems match to our model.

2.1. Assumptions

The considered distributed computing system is constructed as a set of computing
nodes (individual computers or clusters) – indexed by v = 1,2,. . . ,V – connected to the
overlay network. Note that overlay networks provide much flexibility. Thus, many cur-
rently deployed network systems applies overlay approach, e.g., Skype, IPTV, Video on
Demand, SETI@home, etc. As the considered computing system works on the top of
an overlay network, computing nodes are connected by virtual links that in the under-
lying network are realized by a path consisting of physical links. According to [25],
nodes’ capacity constraints are typically sufficient in overlay networks. Moreover, in
the concept of overlay networks usually the underlay physical network is assumed to
be overprovisioned and the only bottlenecks are access links [12]. Therefore, the only
network capacity constraints of the model are set on access links. As we consider a ca-
pacity and flow allocation problem, the access link capacity is to be dimensioned – the
integer variable yv denotes the number of capacity modules allocated to the access link
of node v. We assume that each node v is assigned to a particular ISP (Internet Service
Provider), which offers high speed access link a capacity module mv given in Mbps
(e.g., Fast Ethernet). For the sake of simplicity, we assume that the whole capacity of
the access link is devoted to the considered computing system. However, the model can
be easily modified to incorporate additional background traffic on each access link fol-
lowing from other types of services used at each node. The only required modification
is to add system this additional background flow to the flow of the computing system
before the link capacity is checked.

Each node v is assigned with a maximum limit on processing rate pv, i.e., each
node is already equipped with some computers and pv denotes the number of uniform
computational tasks that node v can calculate in one second. However, the problem can
be easily modified to enable optimization also of this kind of resource by introducing
additional variable to dimension processing resources.

The computing system is designed to process a set of computational projects
r = 1,2,. . . ,R. Each project r is described by a set of parameters. The number of
uniform computational tasks (of the same required processing power, e.g., a number of
FLOPS) of project r is denoted as nr. Each project is assigned with a set of source nodes
that produce the input data and a set of destination nodes that are to receive the output

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



274

data including results of computations. Constant s(r, v) is 1, if node v is the source
node of project r; 0 otherwise. In the same way, t(r, v) is 1, if node v is the destina-
tion node of project r; 0 otherwise. In spite of the assumption that the uniform task for
each project has the same computational requirement, the values of the input and output
data transmit rate are specific for each computational project following from particular
features of the project. Constant arv denotes the transmit rate of input data generated in
node v and related to project v. If a particular node v is not the source node of project r,
then arv = 0. Let ar =

∑
v arv denote the overall transmit rate of input data related to

project r. Constant br defines the transmit rate of output data, respectively, per one task
in project r. Constants arv and br are given in bps (bits per second).

The workflow of the computations is as follows. The input data of a particular task
of project r is transferred from each source node to one or more computing nodes that
process the data. Next, the output data (results of computations) is sent from the com-
puting node to all destination nodes. We assume that the computational project is long-
lived, i.e., it is established for a relatively long time (days, weeks). Consequently, the
input and output data associated with the project is continuously generated and trans-
mitted. Therefore, computational and network resources can be allocated in the system
according to offline optimization. Moreover, we do not consider – as in many other
works (e.g. [Nabrzyski] – the time dependency of each task (starting time, completion
time, etc.). An integer variable xrv denotes the number of project r tasks computed on
node v. A corresponding auxiliary binary variable zrv is 1 if node v calculates at least
one task of project r, 0 otherwise.

Fig. 1 shows a simple example to illustrate the overlay computing system architec-
ture addressed in this paper. The system contains five computing nodes denoted as A, B,
C, D, and E. Two tasks are to be computed. Nodes A and E are the source node of each
task. Therefore, they provide the input data related to the tasks (rectangles labeled i1A,
i2A, i1E and i2E). Rectangles labeled p1 and p2 denote the places where a particular
task is calculated. Rectangles labeled o1 and o2 denote results of computations related
to tasks 1 and 2, respectively. Nodes B and D are destinations of each task. Moreover,
we present network flows generated to deliver the input and output data. Solid lines de-
note the flow of input data. Circle with a number and node id inside shows the indices
of tasks the input data is related to. Dotted line shows the flow of output data. Again,
the numbers in red circles indicate task indices the data belongs to. Note that each task
has two nodes providing the input data and two destination nodes, thus many-to-many
transmission is applied.

We assume that the maximum number of computing nodes involved in one project
cannot exceed a limit denoted by N . For instance, if N = 1, then all uniform task of each
project must be computed only on one node. If we set N = V , the number of computing
nodes is not limited. We refer to N as split factor. The motivation behind this assumption

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



275

Fig. 1. Example of an overlay computing system

is related to management issues, i.e., less computing nodes (lower value of the split
factor) facilitates the management of the distributed computing system. The objective
of the optimization problem is to minimize the operating cost of the computing system
including expenses related to the access link and processing of tasks. We dimension
access links (variable yv) and and optimize allocation of computing tasks (variable xrv).

2.2. Objective Function

The objective function refers to operating costs (OPEX) of the system and includes
two elements: networking costs and processing costs. The former element corresponds
to costs of access links. Constant ξv given in euro/month denotes the whole OPEX cost
related to one capacity module allocated for node v and includes leasing cost of the ca-
pacity module paid to the ISP as well as all other OPEX costs like energy, maintenance,
administration. Since computing nodes are spread geographically in many countries
with various ISPs, energy and maintenance costs, values of the module size and cost can
be different for each node. Note that – if necessary – a number (more than 1) of capacity
modules can be assigned to node v – thus the decision variable yv is integer. For a good
survey on various issues related to network costs see [16].

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



276

To model processing costs for each node v we are given constant ψv that denotes the
OPEX cost related to processing of one uniform task in node v. The ψv cost is given in
euro/month and includes all expenses necessary to process the uniform computational
tasks (e.g., energy, maintenance, administration, hardware amortization etc.). Similarly
to network costs ξv – the processing cost ψv is different for various nodes. This follows
from the fact that nodes are placed in different countries with various costs related to
energy, maintenance, administration. Various aspects of grid economics are discussed in
[15].

2.3. Model

To formulate the problem we use the notation proposed in [16].
indices
v,w = 1,2,. . . ,V computing nodes
r = 1,2,. . . ,R projects
constants (additional)
pv maximum processing rate of node v (number of computational tasks that

node v can calculate in one second)
nr size of project r (number of tasks in project)
arv transmit rate of node v input data per one task in project r(Mbps)
ar transmit rate of overall input data per one task in project r(Mbps),

ar =
∑

v arv

br transmit rate of output data per one task in project r(Mbps)
s(r, v) = 1, if v is the source node of project r; 0, otherwise
t(r, v) = 1, if v is the destination node of project r; 0, otherwise
tr number of destination nodes in project r
M large numer
N split ratio showing the maximum number of nodes involved in computing

of one project
ψv OPEX cost related to processing of one uniform task in node v

(euro/month)
ξv OPEX cost related to one capacity module of node v (euro/month)
mv size of the capacity module for node v (Mbps)
variables
xrv number of tasks of project r assigned to node v (non-negative integer)
yv capacity of access link for node vexpressed in the number of modules

(non-negative integer)
zrv = 1, if project r is calculated on node v; 0, otherwise (binary)

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



277

Objective
It is to find scheduling of task allocation and dimensioning of link capacity and

minimize the OPEX cost related to access links selected for each node (
∑

v yv ξv) and
processing of computational tasks (

∑
v

∑
r xrvψv):

minC =
∑
v

yv ξv +
∑
v

∑
r

xrvψv (1)

Constraints
a) The number of tasks assigned to each node cannot exceed the node’s processing

limit given by pv. ∑
r

xrv ≤ pvv = 1, 2, . . . , V (2)

b) The flow downloaded by each node cannot be larger than the download capacity:
∑
r

(ar − arv)xrv +
∑

r:t(r,v)=1

br(nr − xrv) ≤ yvmvv = 1, 2, . . . , V (3)

In particular, the left-hand side of (3) denotes the flow entering node v and includes
two terms. The former one (

∑
r (ar – arv)xrv ) is the transmit rate of input data of

all projects calculated on node v. To process the task, node v must download all input
data with transmit rate given by ar. When the considered node v is the source node of
project r, the incoming flow is decreased by avr denoting the input data available locally
on the node. The latter term (

∑
r:t(r,v)=1 br(nr – xrv)) follows from the fact that each

destination node v of the project r (t(r,v) =1) must download the project results related
to (nr – xrv) tasks (all tasks of project r except the tasks assigned to the node v). The
right-hand side of (3) defines the download capacity of node v.

c) Analogously to (3), the upload capacity constraint must be satisfied:
∑

r:s(r,v)=1

arv(nr − xrv) +
∑
r

(tr − t(r, v))brxrv ≤ yvmvv = 1, 2, . . . , V (4)

Again, the left-hand side of (4) compromises two elements. The first one
(
∑

r:s(r,v)=1 arv(nr – xrv)) denotes that the source node v of project r (s(r,v) = 1)
must upload its input data for computation of (nr – xrv) tasks (all tasks excluding the
tasks assigned to node v). The second element (

∑
r (tr – t(r,v))brxrv) means that each

node must upload the output data to all destination nodes of the project r given by tr.
Notice that we take into account the case when the considered node v is among destina-
tion nodes of the project r, therefore we use formula (tr – t(r,v)) to denote the number
of nodes to which the output data is transmitted.

d) All tasks of each project r = 1,2,. . . ,R are assigned for processing:
∑
v

xrv = nrr = 1, 2, . . . , R (5)

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



278

The model given by (1)-(5) defines the basic version of the optimization problem.
Additionally, we consider a limit on the maximum number of nodes involved in each
project. The idea is to minimize the management overhead and reduce the number of
nodes processing tasks related to the same project.

e) Binary variable zrv is bound with decision variable xrv:

xrv ≤ Mzrvr = 1, 2, . . . , Rv = 1, 2, . . . , V (6)

f) For each project r the number of nodes involved in the project cannot exceed the
given threshold N : ∑

v

zrv ≤ Nr = 1, 2, . . . , R (7)

2.4. Cut Inequalities

The problem (1)-(7) is NP-hard, since it is equivalent to the network design problem
with modular link capacity [16]. Therefore, we propose to use additional cut inequalities
that can be applied in construction of the branch-and-cut algorithm. Cut inequalities are
introduced into the optimization problem to facilitate the branching phase and improve
the quality of bounds. We consider the cut-and-branch variant of the B&C algorithm, in
which cut inequalities are added to the root node of the solution tree. It means that all
generated cuts are valid throughout the whole B&C tree [14].

The first cut is related to a lower bound on the variable yv. Notice that if node v is
a destination node of project r (t(r, v) = 1), it must receive the output data (results of
computations) related to project r. Node v can receive the data in two ways: either as
the input data (that is later processed on this node to obtain the output data) or as the
output data. In the former case, two cases are to be considered. First, if node v is the
source node of project r, then the download transmit rate is (ar – arv), since arv is the
rate of source date produced in node v. Second, when node v is not the source node of
project r, then the download transmit rate is arv. Concluding, the download capacity of
node v related to processing of task r must exceed the minimum of input and output data
rates of project r. Let drv denote the lower bound of download flow related to node v
and task r

drv = t(r, v)min(s(r, v)(ar − arv), (1− s(r, v))ar, br) (8)

In analogous way, we analyze the upload capacity of node v related to processing of
task r. If node v is the source node of task r (s(r, v) = 1), the data related to task r is
to be delivered to all destination nodes of this task. Again, the data can be sent either
as input data (rate arv) to another processing node or node v calculates task r and sends
the output data (rate br) to (tr – t(r,v)) nodes (all destination nodes except itself). The
upload capacity of node v related to task r must exceed the following value

erv = s(r, v) min(arv, ((tr − t(r, v))br) (9)

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



279

Thus, we can write the following constraints on the minimum capacity of each
node v ∑

r

drv ≤ zvmvv = 1, 2, . . . , V (10)

∑
r

erv ≤ zvmvv = 1, 2, . . . , V (11)

Moreover, we can use the MIR (Mixed Integer Rounding) approach [9], [13] and
rewrite the above constraints in the following way

[U + F8EE]
∑
r

drv/mv[U + F8F9] ≤ zvv = 1, 2, . . . , V (12)

[U + F8EE](
∑
r

erv/mv[U + F8F9] ≤ zvv = 1, 2, . . . , V (13)

Next, we apply cuts based on the the Cover Inequality (CI) approach [1]. Two con-
straints are taken into account, i.e., the processing limit (3) and the split limit (7). To
limit the number of possible cover inequalities, we first solve linear relaxation of the
model (1)-(7). Next, in the obtained solution, we identify variables xrv and zrv that are
not integer and for these variables the CI approach is applied in the context of constraints
(3) and (7).

3. Heuristic Algorithms

In this section, we will present two heuristic developed to solve optimization model
(1)-(7). The first method called AlgGreedy uses a simple greedy approach, while the
second one called AlgTS is based on the tabu search method.

3.1. Greedy Algorithm

The pseudocode of the AlgGreedy method is shown in Fig. 2. The main idea of the
algorithm is as follows. All individual tasks are processed in a single run of the algo-
rithm (loop in lines 4-6). For each step of the loop, the best allocation of a task to a
computing node is selected according to function MinCostAllocation() (line 5) and next
the allocation is made according to function AllocateTask() (line 6). Note that the Allo-
cateTask() function not only assigns a task of selected project r′ to the chosen computing
node v′, but also updates the system, i.e., decreases the number of not allocated tasks
of r′, decreases the available upload and download capacity of v′ according to transmit
rates of output and input data in project r′. This means that the function MinCostAllo-
cation() is always run in the current state of the system where performed task allocations
limit the system resources. Finally, when all allocations are made (i.e., values of variable
xrv are selected), function AssignCapacitytoLinks() selects the smallest values of link

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



280

capacity for each node (variable yv) in order to satisfy the network flows generated by
variables xrv.

Fig. 2. Pseudocode of AlgGreedy algorithm

The MinCostAllocation() function is described in lines 9-21. To find the best (with
the lowest cost) allocation, all potential nodes are examined. However, only feasible
nodes with free resources of the processing power (line 13) are considered as candidate
nodes. Next, all feasible projects (with some not allocated tasks and satisfying the split
ratio limit) are analyzed to find the allocation with minimum cost. Function Cost(v, r)
(line 16) is a weighted sum of two elements. The first component is an average cost
of allocation of one task of project r to node v taking into account the processing cost
as well as the network cost. The network cost follows from the fact that allocation of
the task to node v generates (i) flow of input data from the source node of the task to
node v and (ii) flow of the output data from node v to all destination nodes of the task.
For all these flows, network capacity is required. For instance, the cost related to the
download capacity of the computing node v and one task of project r is estimated by
formula ξvar/mv. All other costs are calculated in analogous way. The second element
of the cost estimates the additional costs (both processing and network) that would be
required in the current system to serve the allocation of a new task of project r to node
v. The additional processing cost is denoted by ψv. The additional network cost would
be necessary only, when the allocation of one task of project r to node v generates the
need to add a new capacity module(s) to some nodes (to provide enough capacity to
send input/output data). Note that allocation of the new task to node v may not require

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



281

expanding of existing capacity, since the already allocated resources may be sufficient
to send all the required data.

3.2. Tabu Search Algorithm

The construction of the AlgTS method is based on the classical Tabu Search (TS)
algorithm [7], [8]. The main idea of the TS method is to apply local searching proce-
dure to avoid loops and local minimums. Short time memory is used to record recently
taken moves and forbid them. In the following, we present the basic operations of the
algorithm with a special focus on new elements. The solution is represented as a set of
variables xrv denoting allocation of tasks to computing nodes. Note that such a repre-
sentation is sufficient to obtain to whole solution of the problem, since – similarly to
AlgGreedy – the capacity dimensioning (variables yv) is made on the base of network
flows yielded by allocation of tasks. Moreover, values of variable zrv can be directly
obtained from variables xrv.

The main element of the Tabu Search method is the neighbor search. In Fig. 3,
we present the pseudocode of this procedure. The main idea is to move some tasks
from one node to another. Note that the procedure is run on a particular solution of
the problem including allocation of tasks given by variables xrv). First, project r′ is
selected at random (line 3) using RandGet function, which returns a randomly selected
value among given values. After that, a potential source node w is selected at random
among potential nodes involved in project r′, i.e., zr′w = 1 (line 4). Next, there are
two options of the method applied according Nr′ denoting the split value of the selected
project r′. First, when Nr′ < N (i.e., the number of nodes involved in project r′ in the
current solution is lower than the split ratio) we run the code in lines 6-10. In more
detail, since the split ratio constraint is not achieved, we can select any destination node
w′ different from w (line 7) and move m tasks from w to w′. Note that the number
of moved nodes is selected at random (line 9) and cannot be larger than the number
of project r′ tasks allocated to w (given by xr′w) and the residual processing capacity
of w′ (given by pw′ –

∑
r xrw′). Function Move(r′, w, w′,m) reallocates m tasks of

project r′ from node w to w and updates values of variables accordingly (line 10). The
second option is when Nr′ = N (i.e., the number of nodes involved in project r′ in the
current solution is equal the split ratio) and lines 11-23 are run. Two procedures are
possible to be excuted in this case, both with 50% probability. The first one – defined
in lines 14-19 – assumes that all tasks from node w (xr′w) are reallocated to a randomly
selected node w′ that is not involved in project r′(xr′w′ = 0) and additionally has enough
residual processing power to process these new tasks (pw′ –

∑
r xrw′ ≥

∑
r xr′w). If there

are not such allocations, the algorithm moves automatically to the second procedure
(lines 20-23). In this case, a randomly selected number of tasks is moved between two
nodes involved in the considered project. However, again the number of reallocated tasks

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



282

cannot exceed feasible limits related to the current number of tasks in node w (xr′w) and
residual processing capacity of node w′ (pw′ –

∑
r xrw′).

The AlgTS algorithm works in a typical way. First, an initial solution is generated
at random. Next, the searching process is started. Each iteration includes choosing the
best solution from the neighbourhood and next moving to this solution. The aspiration
is based on the best-fit criterion. Three parameters are used to tune the algorithm:

• exploration_depth limits the number of overall solutions analyzed in the neigh-
borhood exploration;

• exploration_range denotes the number of start nodes used in the neighborhood
exploration;

• tabu_list_length defines the length of the tabu list.

Fig. 3. Pseudocode of AlgTS algorithm

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



283

4. Results

Algorithms described in the previous section were implemented in C++ . Moreover,
the ILP model presented in Section 2 as well as additional cut inequalities were imple-
mented using CPLEX 11.0 solver [10]. The goal of experiments was threefold. First,
we wanted to tune the AlgTS algorithm in order to find the best configuration of tuning
parameters. Second, we compared results of heuristic methods against optimal results
provided by CPLEX. Finally, we analysed performance of additional cut inequalities.
Simulations were run on a PC computer with IntelCore i7 processor and 4GB RAM.

Small systems
Number of computing nodes 20
Number of projects 10
Cost of capacity module 120-400
Processing cost of one unit 50-150
Processing limit of one node 10-40
Number of source nodes 1-4
Number of destination nodes 1-4
Input and output data rates 5-15

Tab. 1. Parameters of tested systems

27 unique configurations of distributed computing systems including 20 nodes and
10 projects were generated randomly. Table 1 presents information about ranges of
system parameters applied in the random generation of the computing systems. For each
unique configuration of nodes and projects 6 values of the split ratio (2, 4, 6, 8, 10 and
20) were tested, what gives 162 unique tests.

The first phase of simulations was devoted to tuning of the AlgTS algorithm. In
Table 2, we report information about tuning parameters of the algorithm – for each
parameter we present the tested values and the final selection of the parameter value
according to performed experiments.

Tested values Selected value
exploration_depth 2,5,10,20,50,100,150,200,400 50
exploration_range 1,2,3,4,5,6,7,8,9,10 3
tabu_list_length 2, 5, 10, 15, 20, 15 10

Tab. 2. Tuning of the exploration_depth parameter

Now we present detailed analysis of parameters selection, which was performed in
the context of small systems. In Fig. 4, we show performance of the AlgTS method as a
function of the exploration_depth. The figure presents the gap to optimal results obtained
for three values of the split ratio parameter. Note that other parameters were set to default
values. We can easily notice that the best results are generated for exploration_depth

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



284

equal to 50, 100 and 150. According to other experiments and to minimize the execution
time of the algorithm, in further tests we set exploration_depth to 50.

Fig. 4. Tuning of the exploration_depth paramter

The second tested parameter was exploration_range. In Fig. 5, we report results of
the AlgTS according to all tested values of this parameter. Again, three values of the split
ration were considered and other tuning parameters were set to default values shown in
Table 2. The best tradeoff between quality of results and execution time is in our opinion
reached for the case when exploration_range is set to 3.

Fig. 5. Tuning of the exploration_range paramter

Finally, we examined the tabu_list_length parameter – Fig. 6 presents the results.
The methodology was analogous as in two previous parameters. We decided to use for
further experiments tabu_list_length equal to 10.

In Fig. 7, we show stability of the AlgTS method – for 4 different computing systems
we executed the algorithm 20 times. We can watch that the algorithm provides quite
stable results.

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



285

Fig. 6. Tuning of the tabu_list_length paramter

Fig. 7. Stability of AlgTS results

The second goal of experiments was devoted to comparison of heuristics against op-
timal results provided by CPLEX. In Table 3, we compare AlgGreedy and AlgTS against
optimal results as a function of the split ratio. We report number of feasible results in
each case, average gap to optimal results and length of 95% confidence intervals. First
of all, we can see that AlgGreedy in the case of the lowest value of the split ration yields
feasible results only in 1 of 27 cases. For larger values of the split ratio, AlgGreedy
is more robust, however still there are some cases when this method does not provide
feasible solutions. In contrast, AlgTS always yields feasible results. The average gap
to optimal results over all tested networks is 8.40% and 1.68% for AlgGreedy and Al-
gTS, respectively. Relatively small values of 95% confidence intervals prove that both
methods provide regular gaps to optimal results. The average execution time of tested
methods is 0.03 seconds, 120 seconds and 140 seconds, for AlgGreedy, AlgTS, CPLEX,
respectively.

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



286

AlgGreedy AlgTS

Split
ratio

Number of
feasible
results

Average gap
to the optimal

results

Lengths of
95% conf.
intervals

Number of
feasible
results

Average gap
to the optimal

results

Lengths of
95% conf.
intervals

2 1 3.34% N/A 27 1.72% 0.25%
4 24 8.40% 0.74% 27 1.03% 0.15%
6 24 8.50% 0.80% 27 1.45% 0.22%
8 23 8.50% 0.84% 27 1.81% 0.22%
10 21 8.35% 0.86% 27 2.05% 0.29%
20 25 8.44% 0.76% 27 2.01% 0.27%

Tab. 3. Heuristics vs. CPLEX – result comparison and lengths of 95% confidence intervals

The next part of numerical experiments was devoted to examine the cut inequalities
proposed in Section 2.4 to facilitate high computational time of the considered optimiza-
tion problem. Recall that the main motivation behind the cut inequalities is to minimize
the execution time of the exact algorithm producing optimal results. In Table 4, we show
results of experiments conducted for 8 exemplary data sets with the split ratio set to 4.
For each data set, we report the execution time and number of nodes in the branch and
bound tree obtained in four case: without additional cuts, with MIR cuts, with CI cuts
and with both kids of cuts. We can easily notice that the best performance offers the
CI cut inequalities – on average the execution time is reduced by about 5%, while the
number of B&B nodes is decreased by about 4%.

Data set
Execution time [s] Number of B&B nodes

No Cut MIR CI All No Cut MIR CI All
1 17737 17426 10046 14071 579 579 421 552
2 11638 11700 11824 11622 567 567 578 578
3 10420 10405 10530 10514 514 514 514 514
4 18892 18939 19079 19110 552 552 566 545
5 20046 20264 20218 30201 495 495 495 557
6 358 358 359 530 0 0 0 0
7 11372 11357 11856 14836 548 548 515 545
8 7113 7129 6988 6973 587 587 587 587

Tab. 4. Effectiveness of cut inequalities

5. Related Works

The authors of [20] focus on multicost algorithms for a joint scheduling of the com-
munication and computation resources. They introduce a multi-cost scheme of poly-
nomial complexity that provides reservations and selects the computation resource to
execute the task and determines the path to route the input data. The results of numer-

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



287

ical experiments show that in a Grid network in which tasks are either CPU- or data-
intensive (or both), it is beneficial for the scheduling algorithm to jointly consider the
computational and communication problems. The paper [22] addresses the optimization
of optical Grids considering combined dimensioning and workload scheduling problem
with additional survivability requirements. The Divisible Load Theory is applied to
tackle the scalability problem and compare non-resilient lambda Grid dimensioning to
the dimensions needed to survive single-resource failures. For regular network topolo-
gies, analytical bounds on the dimensioning cost are obtained. To validate these bounds,
the authors report results of comparisons for the resulting Grid dimensions assuming a
2-tier Grid operation as a function of varying wavelength granularity, fiber/wavelength
cost models, traffic demand asymmetry and Grid scheduling strategy for a specific set
of optical transport networks. The authors of [5] present a dimensioning problem of
computing Grids taking into account server location and capacity, network routing and
capacity. They propose an integrated solution with joint optimization of the network
and server capacity, and incorporate resiliency against both network and server failures.
A case study on a meshed European network comprising 28 nodes and 41 links is pre-
sented. The results show that compared to classical (i.e., without relocation), they can
offer resilience against both single link and network failures by adding about 55% extra
server capacity, and 26% extra wavelengths. In [12], the authors consider optimization
of overlay computing systems. The main goal is to allocate tasks to computing nodes
in order to minimize the operational cost related to data transmission and processing.
An ILP model is formulated and effective heuristic based on the GRASP method is
proposed and evaluated. Paper [11] regards resilient optical Grids are considered. The
authors examine how to maximize the grade of services for given transport capacities,
while maximizing the protection level, i.e., against single link vs. single link and node
(including server node) failures. A large scale optimization model is solved with help of
Column Generation (CG) technique.

The idea of distributed computing systems have been gaining much popularity es-
pecially in the medical area, e.g., [2], [3], [6], [17], [19]. The BioGrid Australia plat-
form enables authorized researchers a secure access to hundreds of thousands of privacy-
protected health records provided by for BioGrid members and collaborators. Each data
contributor maintains control of the access and use of their data. The platform includes
Local Research Repository (LRR) servers located at collaborating institutions, which
host replica copies of the institution’s linked data sources. The Federated Data Integra-
tor (FDI) server located at the BioGrid Australia is responsible to dynamically integrate
data from linked data sources (via collaborating institution LRRs) in response to re-
searchers’ data queries. It should be noted that original data is not stored on the FDI.
The next element of the system called Statistical Analysis System (SAS) is a collection
of data interrogation, statistical analysis and reporting tools available through BioGrid

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



288

Australia to registered researchers. BioGrid Australia has enabled the implementation
of many successful collaborative research projects, for a list of publications and other
details see the website of the project [2]. MedlGrid is a proposal of a high performance,
freely accessible medical image processing environment based on a distributed archi-
tecture. The idea of the system followed from a joined interaction between scientists
devoted to the design and deployment of new and efficient tomographic reconstruction
techniques, researchers in the field of distributed and parallel architectures, and physi-
cians interested in experimenting with new advances in the field of image reconstruction
and analysis. The major objective of the project was to design an easily accessible
and usable platform providing medical experiments and research functionalities. In [3],
the authors describe a prototypal grid architecture along with an open and distributed
software environment. The computing infrastructure contains a storage server, a high
performance parallel computing unit, and two PCs that act as clients to the system and
that are located in geographically distant areas. The author of [6] introduce a model for
developing and deploying a Self-Organized Map in an open source cluster and caching
system under a popular distributed framework, J2EE. The main goal of the paper is to
provide an efficient, flexible and low-cost model for implementing the SOM in a cluster
environment. The major advantage of the proposed architecture is scalability, since any
extra calculation work load required for a larger SOM can be accommodated easily by
just adding more nodes or computers to the cluster. In [17] it is shown how the grid
computing can be used to improve the operation of a medical image search system. The
authors describe the basic principles of a content-based image retrieval (CBIR) system
and identifies the computationally challenging tasks in the system. To tackle the most
difficult issues of the content-based image retrieval process, an efficient architecture is
introduced that applies a distributed grid computing approach to carry out the image
processing in a distributed and efficient way. The authors of [19] report a project that de-
signs and implements a pervasive health service infrastructure based on the grid system.
Additionally, the proposed architecture includes P2P’s resource sharing mechanism, to
provide the personal health service. The personal health status is recorded, monitored,
and mined in/from the proposed pervasive health service system for preventive medicine.

For more information related to Grid systems including description of representative
examples of Grid computing projects refer to [2], [15], [23], [24]. More information on
overlay systems can be found in [4], [18], [21].

6. Concluding remarks

This paper has detailed a novel optimization problem for overlay computing sys-
tems with many-to-many transmissions. We have formulated the problem in the form of
the ILP model with additional cut inequalities proposed to facilitate complexity of the

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



289

optimization problem. Next, we have developed two heuristic algorithms to solve the
problem. Experimental results reported in the paper validate effectiveness of proposed
heuristics – both methods provide satisfactory results in terms of the result quality and
execution time. In more details, the greedy approach yields solution on average 8.40%
worse than optimal ones, however the execution time is significantly lower comparing
to the CPLEX solver. The Tabu Search method produces results only 1.68% lower com-
paring to optimal ones with lower execution time than the exact method.

Research results presented above have some practical implications. First, in the
case of relatively stable and long-lived computational projects (e.g., time scale of days,
weeks), the proposed optimization methods could be applied to find the most cost ef-
fective configuration of the system including both task scheduling and network dimen-
sioning. In that case, the offline optimization is not an obstacle, as the system is to work
for quite long time with the same configuration. Second, in the case of more dynamic
systems, the results of offline optimization obtained using our methods can be used as a
benchmark solution to evaluate quality of online optimization approaches. Finally, the
proposed optimization framework containing both ILP model and heuristics could be
used to examine main features of overlay computing systems with many-to-many trans-
missions regarding, i.e., how parameters like number of computing nodes, number of
tasks, node processing rate, network capacity and others influence the operational cost
of the system.

Encouraged by obtained results, in future work we plan to continue our research
on distributed computing systems with many-to-many transmissions along two main
research directions. On the one hand, we plan to introduce to the architecture additional
survivability constraints in order to protect the system against network and computing
device failures. Again, both exact and heuristic methods are planned to be developed to
solve the problems. On the other hand, we are going to examine issues related to online
optimization of overlay computing systems.

Acknowledgement

The work was supported by the Polish National Science Centre (NCN), under the
grant N N519 650440.

References

1. C. Barnhart, C.A. Hane, P.H. Vance: Using Branch-and-Price-and-Cut to Solve Origin-
Destination Integer Multicommodity Flow Problems. Operations Research, Vol. 48,
No. 2, pp. 318-326, 2000.

2. BioGrid Australia. http://www.biogrid.org.au/wps/portal.

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



290

3. P. Bonetto, G. Oliva, A.R. Formiconi: MedIGrid: a medical imaging environment based
on a grid computing infrastructure. Proceedings of the 25th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society, Vol.2, pp. 1338-1341,
2003.

4. J. Buford, H. Yu, E. Lua: P2P Networking and Applications. Morgan Kaufmann, 2009.

5. C. Develder et al.: Survivable Optical Grid Dimensioning: Anycast Routing with Server
and Network Failure Protection. In Proc. IEEE International Conference on Communica-
tions, ICC 2011, pp. 1-5, 2011.

6. C.K. Fong: A Study in Deploying Self-Organized Map (SOM) in an Open Source J2EE
Cluster and Caching System. IEEE/ICME International Conference on Complex Medical
Engineering, 2007, pp. 778-781, 2007.

7. M. Gendreau, J. Potvin: Handbook of metaheuristics. Springer, 2010.

8. F. Glover: Tabu Search - Part I. ORSA J. on Computing, Vol. 1, No. 3, pp. 190-206,
1989.

9. O. Gunluk: Branch-and-Cut Algorithm for Capacitated Network Design Problems. Math.
Programming, Vol. 86, No. 1, pp. 17-39, 1999.

10. ILOG: CPLEX, 12.0 User’s Manual. France, 2007.

11. B. Jaumard, A. Shaikh: Maximizing access to IT services on resilient optical grids, 3rd
International Congress on Ultra Modern Telecommunications and Control Systems and
Workshops (ICUMT), pp.1-6, 5-7 Oct. 2011.

12. T. Kacprzak, K. Walkowiak, M. Woźniak: Optimization of Overlay Distributed Comput-
ing Systems for Multiple Classifier System – Heuristic Approach. Logic Journal of IGPL,
DOI: 10.1093/jigpal/jzr020, 2011.

13. H. Marchand, L. Wolsey: Aggregation and mixed integer rounding to solve MIPs. Opera-
tions Research, Vol. 49, No. 3, pp. 363-371, 2001.

14. J. Mitchell: Branch-and-cut methods for combinatorial optimization problems. in the
Handbook of Applied Optimization, Oxford University Press, 2002.

15. J. Nabrzyski, J. Schopf, J. Węglarz (eds.): Grid Resource Management: State of the Art
and Future Trends. Kluwer Academic Publishers, 2004.

16. M. Pioro, D. Medhi: Routing, Flow, and Capacity Design in Communication and Com-
puter Networks. Morgan Kaufmann Publishers, 2004.

17. M.J. Pitkanen, Xin Zhou, A. Hyvarinen, H. Muller: Using the Grid for Enhancing the
Performance of a Medical Image Search Engine. 21st IEEE International Symposium on
Computer-Based Medical Systems, 2008. CBMS ’08., pp. 367-372, 2008.

18. X. Shen, H. Yu, J. Buford, M. Akon (eds.): Handbook of Peer-to-Peer Networking.
Springer, 2009.

19. S. Lu, K. Lai, D. Yang, M. Tsai, K. Li, Y. Chung: Pervasive health service system: insights
on the development of a grid-based personal health service system. 2010 12th IEEE In-
ternational Conference on e-Health Networking Applications and Services (Healthcom),
pp. 61-67, 2010.

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM



291

20. T. Stevens et al.: Multi-Cost Job Routing and Scheduling in Optical Grid Networks. Fu-
ture Generation Computer Systems. Vol. 25, No. 8, pp. 912-925, 2009.

21. S. Tarkoma: Overlay Networks: Toward Information Networking. Auerbach Publications
2010.

22. P. Thysebaert et al.: Scalable Dimensioning of Resilient Lambda Grids, Future Genera-
tion Computer Systems. Vol. 24, No. 6, pp. 549-560, 2008.

23. A. Travostino, J. Mambretti, G. Karmous-Edwards (eds.): Grid Networks Enabling Grids
with Advanced Communication Technology. Wiley, 2006.

24. B. Wilkinson: Grid Computing: Techniques and Applications. Chapman & Hall/CRC
Computational Science 2009.

25. Y. Zhu, B. Li: Overlay Networks with Linear Capacity Constraints. IEEE Transactions
on Parallel and Distributed Systems, vol. 19, no. 2, pp. 159-173, 2008.

Optymalizacja nakładkowych systemów obliczeniowych z transmisjami wielu do
wielu

Streszczenie

Zagadnienia dotyczące optymalizacji systemów obliczeń rozproszonych zyskują
w ostatnich latach na znaczeniu. Systemy obliczeń rozproszonych rozwijane są w dwóch
podstawowych architekturach sieciowych. Po pierwsze, budowane są dedykowane
sieci optyczne łączące ośrodki obliczeniowe. Po drugie, wykorzystuje się istniejącą
infrastrukturę sieciową (np. Internet) dla budowania systemów pracujących w ar-
chitekturze nakładkowej (ang. overlay). Ta druga koncepcja zyskuje ostatnią dużą
popularność, gdyż umożliwia szybką i tanią realizację systemów obliczeniowych bez
potrzeby mocnej współpracy z operatorami sieciowymi. W pracy rozważamy nakład-
kowy system obliczeniowy umożliwiający transmisje wielu do wielu – dane wejś-
ciowe do obliczeń są generowane w wielu źródłach (węzłach sieciowych), następ-
nie po przetworzeniu są przesyłane do wielu odbiorców zainteresowanych wynikami
obliczeń. W oparciu o zaproponowaną architekturę systemu, w pracy sformułowano
problem optymalizacyjny mający na celu minimalizację kosztów operacyjnych sys-
temu obejmujących koszty obliczeń i koszty przesyłania danych. Model zostałzapisany
jako program całkowitoliczbowy. Z uwagi na fakt, że ten problem należy do klasy
problemów NP-zupełnych, zaproponowano dodatkowe odcięcia dla algorytmu podziału
i oszacowań oraz dwa efektywne algorytmy heurystyczne. Przeprowadzone ekspery-
menty obliczeniowe wykazały, że opracowane algorytmy dają wyniki bliskie optymal-
nym w mniejszym czasie niż algorytm optymalny zawarty w pakiecie CPLEX.

Unauthenticated | 89.67.242.59
Download Date | 6/2/13 6:18 PM


