Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study demonstrates the development of a unique hybrid thermoplastic composite using reduced Graphene oxide (rGO) content and Zirconia (ZrO2) nanoparticles into the Ultra-High Molecular Weight Polyethylene (UHMWPE) biomaterials for continuous loading conditions. Specimens with different loadings of rGO (0 to 1.5 wt.%) and ZrO2 (5 to 10 wt.%) were fabricated using liquid phase ultrasonication followed by the hot press moulding method. The samples were analyzed using Thermogravimetric Analysis (TGA), Impact (Izod) testing, and Dynamic Mechanical Analysis (DMA). The developed material feasibility was assessed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analyses. The findings revealed that the 1 wt.% rGO/5 wt.% ZrO2/UHMWPE sample improved the storage modulus by 66.15%, and the Impact absorbed energy by 11.33% compared to the pristine UHMWPE. The proposed nanocomposite could be endorsed for artificial joints, prostheses, and other Artificial Bio-Bearing (ABB) applications.
Go to article

Authors and Affiliations

Devendra Kumar Singh
1
Rajesh Kumar Verma
2
ORCID: ORCID
Sanjay Mishra
1

  1. Madan Mohan Malaviya University of Technology, Department of Mechanical Engineering, Gorakhpur, 273010, India
  2. School of Engineering, Harcourt Butler Technical University, Department of Mechanical Engineering, Kanpur, 208002, India

This page uses 'cookies'. Learn more