Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of testing samples of shield-centering elements from medium-voltage surge arresters. The elements were made of TSE glass textolite. The elements have been dismantled from different operated surge arresters, which were subjected to discharge currents (short-circuit currents) of different intensity and duration. The discharge currents led to degradation of the tested elements with various degrees of advancement. The degradation was investigated using microscopic methods and energy-dispersive X-ray spectroscopy (EDS). Changes in the content of elements of the surface of textolite materials – as the degradation progresses – were documented.
It was found that high discharge current flows resulted in melting of the organic binder, epoxy resin, especially its surface layer. Partial charring and even burning of the resin was noticeable. Furthermore, it was found that with increasing degradation on the surface of the TSE laminate, the carbon and oxygen content, which are part of the organic resin, decreases. Simultaneously the amount of silicon, calcium and aluminium, which are present in the glass fibres, increases. The charring effect of the resin and the formation of conductive paths result in a decrease in the performance of surge arresters and their subsequent failure.
Go to article

Authors and Affiliations

P. Papliński
1
H. Śmietanka
1
P. Ranachowski
2
Z. Ranachowski
2
ORCID: ORCID
K. Wieczorek
3
S. Kudela Jr
4

  1. Institute of Power Engineering – Research Institute, 8 Mory Str., 01-330 Warsaw, Poland
  2. Institute of Fundamental Technological Research PAS, 5b Pawińskiego Str., 02-106 Warsaw, Poland
  3. Wrocław University of Science And Technology, Faculty of Electrical Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  4. Institute of Materials and Machine Mechanics Slovak Academy of Sciences, Dúbravská Cesta 9/6319, 845 13 Bratislava, Slovakia

This page uses 'cookies'. Learn more