Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Inconel 718 alloys, which are primarily temperature resistant, are widely used in aviation, aerospace and nuclear industries. The study on dry cutting processes for this alloy becomes difficult due to its high hardness and low thermal conductivity, wherein, most of the heat transfers due to friction are accumulated over the tool surface. Further, several challenges like increased cutting force, developing high temperature and rapid tool wear are observed during its machining process. To overcome these, the coated tool inserts are used for machining the superalloys. In the present work, the cemented carbide tool is coated with chemical vapor deposition multi-layering Al 2O 3/TiCN under the dry cutting environment. The machining processes are carried out with varying cutting speeds: 65, 81, 95, and 106 m/min, feed rate 0.1 mm/rev, and depth of cut 0.2 mm. The variation in the cutting speeds can attain high temperatures, which may activate built-up-edge development which leads to extensive tool wear. In this context, the detailed chip morphology and its detailed analysis are carried out initially to understand the machining performance. Simultaneously, the surface roughness of the machined surface is studied for a clear understanding of the machining process. The potential tool wear mechanism in terms of abrasion, adhesion, tool chip off, delaminating of coating, flank wear, and crater wear is extensively identified during the processes. From the results, it is observed that the machining process at 81 m/min corresponds to a better machining process in terms of lesser cutting force, lower cutting temperature, better surface finish, and reduced tool wear than the other machining processes.
Go to article

Bibliography

[1] R.M. Arunachalam, M.A. Mannan, and A.C. Spowage. Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. International Journal of Machine Tools and Manufacture, 44(14):1481–1491, 2004. doi: 10.1016/j.ijmachtools.2004.05.005.
[2] L. Li, N. He, M.Wang, and Z.G.Wang. High-speed cutting of Inconel 718 with coated carbide and ceramic inserts. Journal of Materials Processing Technology, 129(1–3):127–130, 2002. doi: 10.1016/S0924-0136(02)00590-3.
[3] E.O. Ezugwu. Key improvements in the machining of difficult-to-cut aerospace superalloys. International Journal of Machine Tools and Manufacture, 45(12–13):1353–1367, 2005. doi: 10.1016/j.ijmachtools.2005.02.003.
[4] T. Kitagawa, A. Kubo, and K. Maekawa. Temperature and wear of cutting tools in high-speed machining of Inconel and Ti–6Al–6V–2Sn. Wear, 202(2):142–148, 1997. doi: 10.1016/S0043-1648(96)07255-9.
[5] S. Chinchanikar, S.S. Kore, and P. Hujare. A review on nanofluids in minimum quantity lubrication machining. Journal of Manufacturing Processes, 68(A):56–70, 2021. doi: 10.1016/j.jmapro.2021.05.028.
[6] A.C. Okafor and T.O. Nwoguh. Comparative evaluation of soybean oil–based MQL flow rates and emulsion flood cooling strategy in high-speed face milling of Inconel 718. The International Journal of Advanced Manufacturing Technology, 107(9–10):3779–3793, 2020. doi: 10.1007/s00170-020-05248-3.
[7] J. Kaminski and B. Alvelid. Temperature reduction in the cutting zone in water-jet assisted turning. Journal of Materials Processing Technology, 106(1–3):68–73, 2000. doi: 10.1016/S0924-0136(00)00640-3.
[8] A. Marques, M. Paipa Suarez, W. Falco Sales, and Á. Rocha Machado. Turning of Inconel 718 with whisker-reinforced ceramic tools applying vegetable-based cutting fluid mixed with solid lubricants by MQL. Journal of Materials Processing Technology, 266:530–543, 2019. doi: 10.1016/j.jmatprotec.2018.11.032.
[9] A. Suárez, L.N. López de Lacalle, R. Polvorosa, F. Veiga, and A. Wretland. Effects of highpressure cooling on the wear patterns on turning inserts used on alloy IN718. Materials and Manufacturing Processes, 32(6):678–686, 2017. doi: 10.1080/10426914.2016.1244838.
[10] R. Polvorosa, A. Suárez, L.N. López de Lacalle, I. Cerrillo, A. Wretland, and F. Veiga: Tool wear on nickel alloys with different coolant pressures: Comparison of Alloy 718 andWaspaloy. Journal of Manufacturing Processes, 26:44–56, 2017. doi: 10.1016/j.jmapro.2017.01.012.
[11] A.R.C. Sharman, J.I. Hughes, and K. Ridgway. Surface integrity and tool life when turning Inconel 718 using ultra-high pressure 786 and flood coolant systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(6):653–664, 2008. doi: 10.1243/09544054JEM936.
[12] W.H. Pereira and S. Delijaicov. Surface integrity of Inconel 718 turned under cryogenic conditions at high cutting speeds. The International Journal of Advanced Manufacturing Technology, 104:2163–2177, 2019. doi: 10.1007/s00170-019-03946-1.
[13] H. González, O. Pereira, L.N. López de Lacalle, A. Calleja, I. Ayesta, and J. Muñoa. Flankmilling of integral blade rotors made in Ti6Al4V using cryo CO2 and minimum quantity lubrication. ASME. Journal of Manufacturing Science and Engineering, 143(9):091011, 2021. doi: 10.1115/1.4050548.
[14] A. Devillez, F. Schneider, S. Dominiak, D. Dudzinski, and D. Larrouquere. Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear, 262(7–8):931–942, 2007. doi: 10.1016/j.wear.2006.10.009.
[15] N.R. Dhar, M.W. Islam, S. Islam, and M.A.H. Mithu. The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI- 1040 steel. Journal of Materials Processing Technology, 171(1):93–99, 2006. doi: 10.1016/j.jmatprotec.2005.06.047.
[16] D. Dudzinski, A. Devillez, A. Moufki, D. Larrouquère,V. Zerrouki, and J. Vigneau. A review of developments towards dry and high speed machining of Inconel 718 alloy. International Journal of Machine Tools and Manufacture, 44(4):439–456, 2004. doi: 10.1016/S0890-6955(03)00159-7.
[17] I.A. Choudhury and M.A. El-Baradie. Machining nickel base super alloys: Inconel 718. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 212(3):195–206, 1998. doi: 10.1243/0954405981515617.
[18] S.K. Thandra and S.K. Choudhury. Effect of cutting parameters on cutting force, surface finish and tool wear in hot machining. International Journal of Machining and Machinability of Materials, 7(3-4):260–273, 2010. doi: 10.1504/IJMMM.2010.033070.
[19] L.N. Lopez de Lacalle, J.A. Sanchez, A. Lamikiz, and A. Celaya. Plasma assisted milling of heatresistant superalloys. ASME Journal of Manufacturing Science and Engineering, 126(2):274– 285, 2016. doi: 10.1115/1.1644548.
[20] M.C. Shaw. Metal Cutting Principles. Clarendon, Oxford, 1984.
[21] E.O. Ezugwu, J. Bonney, and Y. Yamane. An overview of the machinability of aeroengine alloys. Journal of Materials Processing Technology, 134(2):233–253, 2003. doi: 10.1016/S0924-0136(02)01042-7.
[22] A. Jawaid, S. Koksal, and S. Sharif. Wear behavior of PVD and CVD coated carbide tools when face milling Inconel 718. Tribology Transactions, 43(2):325–331, 2000. doi: 10.1080/10402000008982347.
[23] T. Sugihara, H. Tanaka, and T. Enomoto. Development of novel CBN cutting tool for high speed machining of Inconel 718 focusing on coolant behaviors. Procedia Manufacturing, 10:436–442, 2017. doi: 10.1016/j.promfg.2017.07.021.
[24] G.A. Ibrahim, C.H.C. Haron, J.A. Ghani, A.Y.M. Said, and M.Z.A. Yazid. Performance of PVD-coated carbide tools when turning Inconel 718 in dry machining. Advances in Mechanical Engineering, 3:790975, 2011. doi: 10.1155/2011/790975.
[25] Z.P. Hao, Y.H. Fan, J.Q. Lin, and Z.X Yu. Wear characteristics and wear control method of PVD-coated carbide tool in turning Inconel 718. The International Journal of Advanced Manufacturing Technology, 78(5–8):1329–1336, 2015. doi: 10.1007/s00170-014-6752-0.
[26] B. Zhang, M.J. Njora, and Y. Sato. High-speed turning of Inconel 718 by using TiAlN- and (Al, Ti) N-coated carbide tools. The International Journal of Advanced Manufacturing Technology, 96(5–8):2141–2147, 2018. doi: 10.1007/s00170-018-1765-8.
[27] F. Zemzemi, J. Rech, W.B. Salem, A. Dogui, and P. Kapsa. Identification of friction and heat partition model at the tool-chip-workpiece interfaces in dry cutting of an Inconel 718 alloy with CBN and coated carbide tools. Advances in Manufacturing Science and Technology, 38(1):5-22, 2014. doi: 10.2478/amst-2014-0001.
[28] W. Grzesik, J. Małecka, Z. Zalisz, K. Zak, and P. Niesłony. Investigation of friction and wear mechanisms of TiAlV coated carbide against Ti6Al4V Titanium alloy using pin-on-disc tribometer. Archive of Mechanical Engineering, 63(1):114-127, 2016. doi: 10.1515/meceng-2016-0006.
[29] V. Bushlya, F. Lenrick, A. Bjerke, H. Aboulfadl, M. Thuvander; J.-E. Ståhl, and R. M’Saoubi: Tool wear mechanisms of PcBN in machining Inconel 718: Analysis across multiple length scale. CIRP Annals, 70(1):73–78, 2021. doi: 10.1016/j.cirp.2021.04.008.
[30] A.R.F. Oliveira, L.R.R. da Silva, V. Baldin, M.P.C. Fonseca, R.B. Silva, and A.R. Machado: Effect of tool wear on the surface integrity of Inconel 718 in face milling with cemented carbide tools. Wear, 476:203752, 2021. doi: 10.1016/j.wear.2021.203752.
[31] A.K.M.N. Amin, S.A. Sulaiman, and M.D. Arif. Development of mathematical model for chip serration frequency in turning of stainless steel 304 using RSM. Advanced Materials and Process Technology, 217-219:2206–2209, 2012. doi: .
[32] J. Hua, and R. Shivpuri. Prediction of chip morphology and segmentation during the machining of titanium alloys. Journal of Materials Processing Technology, 150(1-2):124–133, 2004. doi: 10.1016/j.jmatprotec.2004.01.028.
[33] K. Lin, W. Wang, R. Jiang and Y. Xiong. Effect of tool nose radius and tool wear on residual stresses distribution while turning in situ TiB2/7050Al metal matrix composites. The International Journal of Advanced Manufacturing Technology, 100:143–151, 2019. doi: 10.1007/s00170-018-2742-y.
[34] K. Mahesh, J.T. Philip, S.N. Joshi and B. Kuriachen. Machinability of Inconel 718: A critical review on the impact of cutting temperatures. Materials and Manufacturing Processes, 36(7):753–791, 2021. doi: 10.1080/10426914.2020.1843671.
[35] V. Sivalingam Y. Zhao, R. Thulasiram, J. Sun, G. Kai, and T. Nagamalai. Machining behaviour, surface integrity and tool wear analysis in environment friendly turning of Inconel 718 alloy. Measurement,174:109028, 2021. doi: 10.1016/j.measurement.2021.109028.
[36] Z. Peng, X. Zhang, and D. Zhang. Performance evaluation of high-speed ultrasonic vibration cutting for improving machinability of Inconel 718 with coated carbide tools. Tribology International, 155:106766, 2021. doi: 10.1016/j.triboint.2020.106766.
[37] D.G. Flom, R. Komanduri, and M. Lee. High-speed machining of metals. Annual Review of Material Science, 14:231–278, 1984. doi: 10.1146/annurev.ms.14.080184.001311.
[38] N.L. Bhirud and R.R. Gawande. Optimization of process parameters during end milling and prediction of work piece temperature rise. Archive of Mechanical Engineering, 64(3):327–346, 2017. doi: 10.1515/meceng-2017-0020.
[39] R.S. Pawade, S.S. Joshi, P.K. Brahmankar, and M. Rahman. An investigation of cutting forces and surface damage in high-speed turning of Inconel 718. J ournal of Materials Processing Technology, 192-193:139–146, 2007. doi: 10.1016/j.jmatprotec.2007.04.049.
[40] A. Shokrani, V. Dhokia, and S.T. Newman. Environmentally conscious machining of difficultto- machine materials with regard to cutting fluids. International Journal of Machine Tools and Manufacture, 57:83–101, 2012. doi: 10.1016/j.ijmachtools.2012.02.002.
[41] Y.S. Liao, H.M. Lin, and J.H. Wang. Behaviors of end milling Inconel 718 superalloy by cemented carbide tools. Journal of Materials Processing Technology, 201(1–3):460–465, 2008. doi: 10.1016/j.jmatprotec.2007.11.176.
[42] R. Komanduri and T.A. Schroeder. On shear instability in machining a nickel-iron base superalloy. Journal of Engineering for Industry, 108(2):93–100. 1986. doi: 10.1115/1.3187056.
[43] R. Rakesh and S. Datta. Machining of Inconel 718 using coated wc tool: effects of cutting speed on chip morphology and mechanisms of tool wear. Arabian Journal for Science and Engineering, 45:797–816, 2020. doi: 10.1007/s13369-019-04171-4.
[44] S. Belhadi, T. Mabrouki, J.F. Rigal, and L. Boulanouar. Experimental and numerical study of chip formation during straight turning of hardened AISI 4340 steel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(7):515– 524, 2005. doi: 10.1243/095440505X32445.
[45] A. Thakur and S. Gangopadhyay. Evaluation of micro-features of chips of Inconel 825 during dry turning with uncoated and chemical vapour deposition multilayer coated tools. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(6):979–994, 2018. doi: 10.1177/0954405416661584.
[46] M. Rahman,W.K.H. Seah, and T.T. Teo. The machinability of Inconel 718. Journal of Materials Processing Technology, 63(1–3):199–204, 1997. doi: 10.1016/S0924-0136(96)02624-6.
[47] S.P. Sahoo and S. Datta. Dry machining performance of AA7075-T6 alloy using uncoated carbide and MT-CVD TiCN-Al2O3 coated carbide Inserts. Arabian Journal of Science and Engineering,45:9777–9791, 2020. doi: 10.1007/s13369-020-04947-z.
[48] H.Z. Li, H. Zeng, and X.Q. Chen. An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts. Journal of Materials Processing Technology, 180(1–3):296–304, 2006. doi: 10.1016/j.jmatprotec.2006.07.009.
Go to article

Authors and Affiliations

Shailesh Rao Agari
1

  1. Department of Industrial and Production Engineering, The National Institute of Engineering, Mysuru, Karnataka, India

This page uses 'cookies'. Learn more