Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Flap peening (FP) is a cold working technique used to apply a compressive force using small shots, this will lead to enhance the surface properties that it can sustain for long life during working conditions. In this study, several aircraft aluminum alloys materials namely; 2219 T6, 2024 T6, 7075T6, and 6061 T6 were flap peened under different rotational speeds. The effect of rotational speed on the average surface roughness (Ra) and average surface micro hardness have been investigated. As seen by the Scanning Electron Microscope SEM phots that the hardness of peened layer is increased. It was found that as the flap peening speeds increase the percent change in surface roughness (Ra) increases, and the percent change in surface micro hardness decreases. The maximum increase in Ra occurs in 2219 T80 and the minimum in 6061 T6 alloys, and for hardness, it is reported that the maximum occurs in 6061 T6 and the minimum in 2019 T80 alloy.
Go to article

Authors and Affiliations

Nabeel Abu Shaban
1
ORCID: ORCID
Nabeel Alshabatat
2
Safwan Al-Qawabah
1
ORCID: ORCID

  1. Al-Zaytoonah University of Jordan, Mechanical Engineering Department, Amman, Jordan
  2. Tafila Technical University, Mechanical Engineering Department, Tafila 66110, Jordan
Download PDF Download RIS Download Bibtex

Abstract

Due the importance of using commercially Zamak5 in a wide range in industrial applications, however, this study was focused on the enhancing its machining issues by adding pure copper, so the effect of the addition of (1 to 3)% Cu to commercially Zamak5 on its mechanical properties, microhardness, surface texture and corrosion resistance was investigated. A CNC machining tests, microhardness tests, corrosion test, compression test, and microhardness test were performed. It was found that there is an enhancement on the flow stress at 0.2 strain of about 19% for 3% Cu addition followed by 17% and 15% in the case of 2% Cu and 1% Cu respectively. There was an enhancement in microhardness of about 11.6% in the case of 3% Cu addition. The surface finish was improved by increasing the number of copper contents (1 to 3)% to the base material Za5. Polarization measurements revealed that 3% alloy specimen inhibit the corrosion by more than 70% compared with the blank sample.
Go to article

Authors and Affiliations

Ahmad Al Aboushi
1
ORCID: ORCID
Safwan Al-Qawabah
1
ORCID: ORCID
Nabeel Abu Shaban
1
ORCID: ORCID
Aiman Eid Al-Rawajfeh
2
ORCID: ORCID

  1. Al-Zaytoonah University of Jordan, Mechanical Engineering Department , Amman, Jordan
  2. Tafila Technical University, 66110 Tafila, Jordan

This page uses 'cookies'. Learn more