Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a numerical analysis carried out to determine the influence of the ground surface fire on the strain level of shelter housing with the ground cover. It is assumed that the underground shelter is longitudinal and the fire spans on an extensive area. The area surrounding the housing was treated as a material with average constant thermodynamic values. The heating and cooling processes were described on the basis of the Fourier’s equation concerning heat conduction in consideration on material, ground and concrete heterogeneous nature. The numeric analysis was carried out in two stages. In the first stage, a quasi-stationary initial temperature distribution was sought in the ground centre and shelter shield. In the second stage of analysis, the fire effect was considered according to the time profile of temperature variation in object.
Go to article

Bibliography

[1] A. Dorsz, A. Rusowicz, and A. Prawdzik. Comparative analysis of assumptions for numerical simulation of the effects of fire – safety of evacuation from the building structure. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, 4(2020):212–226, 2020. doi: 10.37105/iboa.89.
[2] A. Asgary, A.S. Naini, and J. Levy. Intelligent security systems engineering for modeling fire critical incidents: towards sustainable security. Journal of Systems Science and Systems Engineering, 18(4):477–488, 2009. doi: 10.1007/s11518-009-5121-2.
[3] J.L. Coen. Some new basics of fire behavior. Fire Management Today, 71(1):38–43, 2011.
[4] T. Putnam and B.W. Butler. Evaluating fire shelter performance in experimental crown fires. Canadian Journal of Forest Research, 34(8):1600–1615, 2004. doi: 10.1139/X04-091.
[5] E. Ozbay, Ö. Çavus, and B.Y. Kara. Shelter site location under multi-hazard scenarios. Computers and Operations Research, 106:102–118, 2019. doi: 10.1016/j.cor.2019.02.008.
[6] R. Linn, K. Anderson, J. Winterkamp, A. Brooks, M. Wotton, J-L. Dupuy, F. Pimont, and C. Edminster. Incorporating field wind data into FIRETEC simulations of the International Crown Fire Modeling Experiment (ICFME): preliminary lessons learned. Canadian Journal of Forest Research, 42(5):879–898, 2012. doi: 10.1139/X2012-038.
[7] Ch. Zhang, J.G. Silva, C. Weinschenk, D. Kamikawa, and Y. Hasemi. Simulation methodology for coupled fire-structure analysis: modeling localized fire tests on a steel column. Fire Technology, 52:239–262, 2016. doi: 10.1007/s10694-015-0495-9.
[8] T. Molkens and B. Rossi. On the simulation of real fire for post fire resistance evaluation of steel structures. Fire Technology, 57:839–871, 2021. doi: 10.1007/s10694-020-01025-6.
[9] N. Johansson, J. Anderson, R. McNamee, and Ch. Pelo. A Round Robin of fire modelling for performance-based design. Fire and Materials, 2020;1–14, doi: 10.1002/fam.2891.
[10] J. Lu, T. Wang, L. Wang, W. Chen, and Y. Chen. Optimization of duct structure and analysis of its impact on temperature inside the shelter. Journal of Physics: Conference Series, 1300:012011, 2019. doi: 10.1088/1742-6596/1300/1/012011.
[11] A.Baryłka. The impact of fire on changing the strength of the underground shelter structure. Rynek Energii, 146(1):71–75, 2020.
[12] T.J. Cova, P.E. Dennison, and F.A. Drews. Modeling evacuate versus shelter-in-place decisions in wildfires. Sustainability, 3(10):1662–1687, 2011. doi: 10.3390/su3101662.
[13] M.D. Lulea, V. Iordache, and I. Năstase. Fire modeling in a nonventilated corridor. E3S Web of Conferences, 32:01011, 2018. doi: 10.1051/e3sconf/20183201011.
[14] C. Salter. Fire modelling within cloud based resources. Fire Technology, 51:491–497, 2015. doi: 10.1007/s10694-014-0433-2.
[15] M. Krajčír and J. Müllerová. 3D small-scale fire modeling experiments. Procedia Engineering, 192:474–479, 2017. doi: 10.1016/j.proeng.2017.06.082.
[16] Y. Varaksin. Concentrated air and fire vortices: Physical modeling (a review). High Temperature, 54(3):409–427, 2016. doi: 10.1134/S0018151X16030226.
[17] Ch. Lautenberger, G. Rein, and C. Fernandez-Pello. The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Safety Journal, 41(3):204–214, 2006. doi: 0.1016/j.firesaf.2005.12.004.
[18] A. Dorsz and A. Rusowicz. Numerical modelling of the influence of thermal effects on the exhaust fans in the fire ventilation systems. Rynek Energii, 154(3):85–90, 2021. (in Polish).
[19] J.A. Prusiel. Theoretical and experimental analysis of thermal fields distribution in granular media stored in silo model. Acta Agrophysica, 19(2):391–402, 2012. (in Polish).
[20] PN-EN: 1991-1-2:2006 – Actions on structures exposed to fire.
[21] Z. Garncarek and J. Idzik. Degree of heterogeneity of thermal field a method of evaluation. International Journal of Heat and Mass Transfer, 35(11):2769–2775, 1992. doi: 10.1016/0017-9310(92)90297-6.
[22] A. Baryłka and D. Tomaszewicz. Influence of measuring deviations of the components of layered walls on their durability. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, 3(2020):155–162, 2020.doi: 10.37105/iboa.75.
[23] M. Abramowicz. Design of building structures subject to fire exposure according to Eurocodes. Kalendarz budowlany 2008 r.. Chapter 18. Warszawskie Centrum Postępu Techniczno-Organizacyjnego Budownictwa WACETOB. (in Polish)
[24] A. Baryłka. The issue of the fitness of buildings for use in the issues of safety engineering of these objects. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, 4, 2019, (in Polish). doi: 10.37105/iboa.31.
[25] A. Baryłka and D. Tomaszewicz. Influence of surface shape of glued anchors on their load capacity. Modern Engineering, 2:78–82, 2020.
[26] E. Kostowski. Heat Flow. WPŚL, Gliwice, 2000. (in Polish).
Go to article

Authors and Affiliations

Adam Baryłka
1
ORCID: ORCID

  1. Centre of Construction Expertise, Warsaw, Poland

This page uses 'cookies'. Learn more