Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

High-pressure die casting results in a high quality surface and good mechanical properties of castings. Under the effect of pressure, integral and solid castings are achieved without a large number of foundry defects. The correct and proper setting of technological parameters plays a very important role in minimizing casting defects. The aim of the presented article is to determine the optimum maximum piston velocity for a casting in the high-pressure casting process with two height variants, depending on their internal quality. It is because the internal quality of particular castings is important in terms of proper functionality in operations where the biggest problem is the porosity of the casting. The main cause of porosity formation is the decreasing solubility of gases (most often hydrogen) during the melt solidification. Solubility represents the maximum amount of gas that can dissolve in a metal under equilibrium conditions of temperature and pressure. Macroporosity and microporosity were determined from the sections of the surfaces in the determined zones of the castings. Here, the results was that the macroporosity decreased with increasing piston velocity. Ideal microstructure was evaluated at a piston velocity of 3 m/s for both types of castings. On the other hand, the increase in tube size has shown that velocities of 3 m/s and higher, the tube is more prone to macroporosity formation. The highest hardness was achieved at the piston velocity of 2 m/s at both tube lengths.
Go to article

Authors and Affiliations

M. Matejka
1
ORCID: ORCID
D. Bolibruchová
1
ORCID: ORCID
R. Podprocká
2

  1. University of Zilina, Faculty of Mechanical Engineering, Department of Technological Engineering, Slovak Republic
  2. Rosenberg-Slovakia s.r.o., Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

The current trend of continuous improvement of various components constantly pushes the development of new materials forward. The basic goal of research into new and better materials is to improve their properties compared to the original material. One of the essential properties of the newly developed aluminum alloys is their resistance to the formation of tearing. Tears appear during the solidification of the casting and break the integrity due to tension arising while cooling. Several factors influence the susceptibility to tearing, but they can be minimized and reduce the chance of their occurrence. As part of the experiment, the AlSi5Cu2Mg alloy was evaluated in four material variants, without additives (in the reference state), with the addition of transition elements Zr, Ti and their combination Zr + Ti. Susceptibility to the formation of teras was assessed using a qualitative method supplemented by microscopic analysis of the tear profile and determination of the dendritic coherence temperature. The evaluation shows that the addition of Zr increased the susceptibility to tear formation. On the contrary, the addition of Ti had a positive effect and reduced the susceptibility to the formation of tears. The effect of the addition of Zr and Ti in the AlSi5Cu2Mg alloy showed a similar values as without the addition of alloys (reference condition). Microstructural analysis of the tear profile pointed to the negative influence of phases rich in Zr. The subsequent evaluation of the dendritic coherence temperature of individual AlSi5Cu2Mg alloys did not show a correlation with the results of a quantitative evaluation of susceptibility to tears.
Go to article

Bibliography

[1] Bolibruchová, D. (2010). Foundry technology. Žilina: vydavateľstvo GEORG, ISBN 978-80-89401-14-7.
[2] Pastirčák, R., Bolibruchová, D., Sládek, A. (2015). Foundry theory. Žilina: EDIS-vydavateľské centrum ŽU, ISBN 978-80-554-1096-8.
[3] Wu, Q., (2012). Study of Hot Tearing in Cast and Wrought Aluminum Alloys. Dissertation thesis. Worchester: Faculty of the Worcester polytechnic institute, UK.
[4] Bruna, M. & Galčík, M. (2021). Casting Quality Improvement by Gating System Optimization. Archives of Foundry Engineering. 21(1). 132-136. DOI:10.24425/afe.2021.136089.
[5] Huang, H., Fu, P, Wang, Y., Peng, L. & Jiang, H. (2014). Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg–3Nd–0.2Zn–Zr Mg alloys. Transactions of Nonferrous Metals Society of China. 24(4), 922-929. DOI:10.1016/S1003-6326(14)63144-7.
[6] Campbell, J. (2015). Complete casting handbook: metal casting processes, metallurgy, techniques and design. Elsevier Science.
[7] Oh, S.H., A.H., Munkhdelger, Ch. & Kim, H.J. (2021). Effect of Cu content on hot tearing susceptibility in al-si-cu aluminum casting alloy. Journal of Korea Foundry Society. 41(5), 419-433.
[8] Bichler, L., Elsayed, A., Lee, K. & Ravindran, C. (2008). Influence of mold and pouring temperatures on hot tearing susceptibility of AZ91D magnesium alloy. International Journal of Metalcasting. 2, 43-54. DOI:10.1007/BF03355421.
[9] Hasan, A. & Suyitno, A. (2014). Effect pouring temperature on casting defect susceptibility of hot tearing in metal alloy Al-Si. Applied Mechanics and Materials. 758, 95-99. https://doi.org/10.4028/www.scientific.net/AMM.758.95.
[10] Djurdjevic, M.B. Sokolowski, J.H. & Odanovic Z. (2012). Determination of dendrite coherency point characteristics using first derivative curve versus temperature. Journal of Thermal Analysis and Calorimetry volume. 109(2), 875-882. https://doi.org/10.1007/s10973-012-2490-4.
[11] Gómez, I. V., Viteri, E. V. Montero, J., Djurdjevic, M. & Huber, G. (2018). The determination of dendrite coherency point characteristics using three new methods for aluminum alloys. Applied Sciences. 8(8), 1236, 1-14. https://doi.org/10.3390/app8081236.
[12] Bolibruchová, D., Širanec, L. & Matejka, M. (2022). Selected properties of a Zr-containing AlSi5Cu2Mg alloy intended for cylinder head castings. Materials. 15(14), 4798, 1-16. https://doi.org/10.3390/ma15144798
[13] Bolibruchová, D., Kuriš, M., Matejka, M. & Kasińska, J. (2022). Study of the influence of zirconium, titanium and strontium on the properties and microstructure of AlSi7Mg0.3Cu0.5 alloy. Materials. 15(10), 3709, 1-20. https://doi.org/10.3390/ma15103709.
Go to article

Authors and Affiliations

M. Matejka
1
ORCID: ORCID
D. Bolibruchová
1
ORCID: ORCID
E. Kantoríková
1
ORCID: ORCID

  1. University of Zilina, Faculty of Mechanical Engineering, Department of Technological Engineering, Slovak Republic

This page uses 'cookies'. Learn more