Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research aimed at developing assumptions for the preparation of a charge in the form of fine scrap copper alloys (chips/shells) guaranteeing effective removal of impurities and obtaining a metal bath of the required metallurgical quality. The tests were conducted for tin-zinc-lead bronze of the CC499K grade. As part of the work, the characteristics of this type of waste available on the market were made in terms of quality and the possibility of their use for the production of both alloys and finished products, taking into account the elimination of harmful impurities that may ultimately affect the production process adversely.
The subject of the work was the selection of appropriate waste cleaning methods in the form of an oily shell in the CC499K (CuZn5Sn5Pb2) grade and its drying in terms of increasing the use of impure waste from machining as scrap for direct melting. The waste was assessed in relation to individual parametres. The research was carried out on 3 groups of waste, with varying degrees of moisture.
Go to article

Authors and Affiliations

W. Malec
1
ORCID: ORCID
B. Cwolek
1
ORCID: ORCID
A. Brudny
1
ORCID: ORCID
J. Kulasa
1
ORCID: ORCID
W. Marek
2
K. Stolorz
2
D. Wróbel
2
A. Filipowicz
2

  1. Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Poland
  2. COGNOR S.A. Oddział OM Szopienice w Katowicach, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of research concerning the evaluation of tribological properties of graphite materials used, among others, for crystallisers for continuous casting of non-ferrous metals and their alloys. Graphite materials differing not only in their physical properties but also in the technology of their production were selected from a wide range of commercially available products. Wear resistance investigations of the tested graphite materials were carried out on a pin-on-disc tribometer under technically dry friction conditions on a sliding distance of 1000 m. A constant load but variable speed was used in the tests. The mean value of the coefficient of friction and the wear of the material were determined based on the tribological tests carried out. It was observed that as the speed increases, the average value of the coefficient of friction decreases, while the wear increases. A microstructural analysis of the wear track showed that the friction mechanism depends mainly on the graphite formation technology, which is related to the microstructure of the tested materials, and to a lesser extent to their physical and mechanical properties. Varying the speed values made it possible to trace changes in the wear mechanism, on the basis of which it is possible to predict the durability and reliability of graphite crystalliser operation.
Go to article

Bibliography

[1] Kwaśniewski, P., Strzępek, P., Kiesiewicz, G., Kordaszewski, Sz., Franczak, K., Sadzikowski, M., Ściężor, W., Brudny, A., Kulasa, J., Juszczyk, B., Wycisk, R. & Śliwka, M. (2021). External surface quality of the graphite crystallizer as a factor influencing the temperature of the continuous casting process of ETP grade copper. Materials. 14(21), 6309, 1-14. DOI: 10.3390/ma14216309.
[2] Brudny, A., Kulasa, J., Cwolek, B., Malec, W. & Juszczyk, B. (2022). Influence of the continuous casting process of tin-zinc-lead bronze on the wear of the graphitecrystallizer. Metalurgija. 61(3-4), 785-788. ISSN 0543-5846.
[3] Lee, S.-M., Kang, D.-S. & Roh, J.-S. (2015). Bulk graphite: materials and manufacturing process. Carbon Letters. 16(3), 135-146. DOI: 10.5714/CL.2015.16.3.135.
[4] Özmen, Y. (2015). Tribological behavior of carbon-based materials. In ASME 2015 International Mechanical Engineering Congress and Exposition, 12-19 November (pp. 13-19). Houston, Texas, USA. DOI: 10.1115/IMECE2015-50233.
[5] Erdemir, A. & Donnet, C. (2006). Tribology of diamond-like carbon films: recent progress and future prospects. Journal of Physics D Applied Physics. 39(18), 311-327. DOI: 10.1088/0022-3727/39/18/R01.
[6] Alisin, V. & Roshchin, M.N. (2019). Tribology of carbon-containing materials at high temperatures. Journal of Physics Conference Series. 1399(4), 044034, 1-6. DOI: 10.1088/1742-6596/1399/4/044034.
[7] Zhai, W., Srikanth, N., Kong, L.B. & Zhou, K. (2017). Carbon nanomaterials in tribology. Carbon. 119, 150-171. DOI: 10.1016/j.carbon.2017.04.027.
[8] Grill, A. (1993). Review of the tribology of diamond-like carbon. Wear. 168(1-2), 143-153. DOI: 10.1016/0043-1648(93)90210-D.
[9] Szeluga, U., Pusz, S., Kumanek, B., Myalski, J. Hekner, B., Tsyntsarski, B., Oliwa, R. & Trzebicka, B. (2018). Carbon foam based on epoxy/novolac precursor as porous micro-filler of epoxy composites. 105, 28-39. DOI: 10.1016/j.compositesa.2017.11.004.
[10] Szeluga, U., Olszowska, K., Pusz, S., Myalski, J., Godzierz, M., Kobyliukh, A. & Tsyntsarski, B. (2021) Effect of grain fractions of crushed carbon foam on morphology and thermomechanical and tribological properties of random epoxy-carbon composites. Wear. 466-467, 1-14. DOI: 10.1016/j.wear.2020.203558.
[11] SGL Carbon. (2022). SGL Carbon. Retrieved March 2022 from https://www.sglcarbon.com/
[12] Robertson, J.F.R. (2002). Diamond-like amorphous carbon. Materials Science and Engineering Reports. 37(4-6), 129-281. DOI: 10.1016/S0927-796X(02)00005-0.
[13] Pérez-Mayoral, E., Matos, I., Bernardo, M. & Fonesca, I.M. (2019). New and advanced porous carbon materials in fine chemical synthesis. Emerging precursors of porous carbons. Catalysts. 9 (2), 133, 1-35. DOI: 10.3390/catal9020133.
Go to article

Authors and Affiliations

A. Brudny
1
ORCID: ORCID
J. Kulasa
1
ORCID: ORCID
B. Juszczyk
1
ORCID: ORCID
J. Myalski
2
ORCID: ORCID
S. Roskosz
2
ORCID: ORCID
R. Wycisk
3
P. Kwaśniewski
4
ORCID: ORCID
P. Strzępek
4
ORCID: ORCID
M. Poręba
5
ORCID: ORCID

  1. Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Poland
  2. Silesian University of Technology, Faculty of Materials Engineering, Poland
  3. Carbo-Graf Sp. z o.o., Poland
  4. AGH University of Science and Technology, Department of Non-Ferrous Metals, Poland
  5. Rzeszów University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents tests on a new lead-free bronze CuSn4Zn2PS, intended for fittings for contact with drinking water, in which the addition of lead was replaced with sulphur. The subject of the experimental work was the production of semi-finished products from this alloy based on the charge coming entirely from waste generated after machining. A specialized pilot line was used for the tests, and after cleaning, the waste was melted and then were continuously cast in the form of rods and hollow rods. The cleaning efficiency was assessed, and the manufactured semi-finished products were subjected to tests, including the assessment of the chemical and mechanical homogeneity and the structure of the test batch of the semi-finished casting products in terms of the possibility of manufacturing products meeting the requirements of technical specifications. The obtained results, both in terms of a stable chemical composition, homogeneous and reproducible mechanical properties, fully compliant with the specifications for fittings bronzes (CC499K), as well as the lack of faults of the obtained semi-finished products, despite a very large share of waste material, indicate the possibility of using the tested recycling method for the production of semi-products of sulphur bronze, which is an alloy that is relatively difficult to manufacture.
Go to article

Bibliography

[1] Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption, Dz.U.L 435/1 of 23.12.2020.
[2] Acceptance of metallic materials used for products in contact with drinking water, 4MS Common Approach Part B “4MS Common Composition List” Retrieved July, 12, 2022 from http://www.umweltbundesamt.de/en/topics/water/drinking-water/distributing-drinking-water/guidelines-evaluation-criteria.
[3] DIN SPEC 2701:2018.
[4] Haake, M., Hansen, A., Leistritz, F. (2019). EP Patent No. EP 3436615. Germany. The German Patent and Trade Mark Office.
[5] PN-EN 1982:2017 Copper and copper alloys - Ingots and castings
[6] Wieland G05, GD1, GS1, SW3 material specification. Retrieved 12, July, 2022 from https://www.wieland.com/en/content/download/.
[7] Marek, W., Kopańska, D., Bieniek, J., Wróbel, D., Stolorz, K., Filipowicz, A., Malec, W., Cwolek, B., Brudny, A., Juszczyk B., Kulasa, J. (2022). PL Patent application No. PL 436188. Poland. The Patent Office of the Republic of Poland.
[8] Cwolek, B., Malec, W., Brudny, A., Kulasa, J., Marek, W., Stolorz, K., Wróbel, D. & Filipowicz, A. (2022). Development of process conditions for the preparation of copper alloys post-production chips for the continuous casting process. Archives of Foundry Engineering. (in publication).
[9] PN-EN 12861:2018-07 Copper and copper alloys – Scrap.
[10] Hansen, A. (2019). Bleifreier rotguss als armaturen-und installationswerkstoff in der trinkwasserinstallation. METALL – Forschung. 73(11), 452-455.

Go to article

Authors and Affiliations

W. Malec
1
ORCID: ORCID
B. Cwolek
1
ORCID: ORCID
A. Brudny
1
ORCID: ORCID
B. Juszczyk
1
ORCID: ORCID
J. Kulasa
1
ORCID: ORCID
A. Hury
1
ORCID: ORCID
W. Marek
2
K. Stolorz
2
D. Wróbel
2
A. Filipowicz
2

  1. Łukasiewicz Research Network — Institute of Non-Ferrous Metals, Poland
  2. COGNOR S.A. Oddział OM Szopienice w Katowicach, Poland

This page uses 'cookies'. Learn more