Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The monograph analyzes health behaviors and main factors on the basis of which it is possible to transform a lifestyle generally focused on the well-being of an individual and society. According to WHO, health is a state of complete physical, mental and social well-being, and not only the absence of a disease. The definition clearly explains its multidimensional and multithreaded character dependent subjectively on every individual and on social and cultural conditions. Health in its general meaning becomes a sub-jective human feeling. Each individual plays an important role in the process of providing it. Good health condition can be achieved by proper nutrition, regular doctor’s check-up visits and active way of life. Health behaviors are still a key element of the daily activity of everyone. Despite the fact that full knowl-edge of the concept of “healthy lifestyle” prevails, still many people avoid categorical statements. In response to questions about lifestyle, a significant number of respondents often indicate an intention or willingness to change, or to partially comply with the requirements, which results from weakness and lack of determination in action. Knowledge supported by the offer of attractive models that promote the right patterns of behavior can have a positive impact on the global health of the society.
Go to article

Authors and Affiliations

Paulina Fałek
1
Tomasz Adamczyk
2
Artur Fałek
1
Franciszek Burdan
3 4

  1. Independent Public Healthcare, Puławy, Poland
  2. The Institute of Sociological Sciences, Faculty of Social Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
  3. Human Anatomy Department, Medical University of Lublin, Lublin, Poland
  4. Department of Radiology, St. John Cancer Center, Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Memory trace is an effect of temporary arousal (perception, experience, action) that causes a specific change in the nervous system. Memory allows to record and recall various information, thus enabling to learn new things. It is an extremely active and dynamic process. The influence of emotions on memory is obvious, largely determined by the close cooperation of the amygdala (responsible for emo-tions) and the hippocampus (memory processes).
Go to article

Bibliography

1. Vetulani J.: Mózg: fascynacje, problemy, tajemnice. Homini, Kraków 2010; 183–229.
2. Domżał T.M.: Pamięć w neurologii: zaburzenia, diagnostyka i leczenie. Forum Medycyny Rodzinnej. 2013; 7 (4): 155–164.
3. Gerardin E.: Morphometry of the human hippocampus from MRI and conventional MRI high field. Université Paris Sud-Paris XI, 2012. English. ffNNT: 2012PA112375ff.
4. Bisaz R., Travaglia A., Alberini C.M.: The neurobiological bases of memory formation: from physiological conditions to psychopathology. Psychopathology. 2014; 47: 347–356.
5. Asok A., Leroy F., Rayman J. B.: Molecular mechanisms of the memory trace. Trends in Neurosciences. 2019; 42 (1): 14–22.
6. Antonova I., Fang-Min Lu, Zablow L., Udo H., Hawkins R.D.: Rapid and long-lasting increase in sites for synapse assembly during late-phase potentiation in rat hippocampal neurons. PLoS One. 2009; 4: e7690.
7. Rasch B., Born J.: About Sleep’s Role in Memory. Physiological Review. 2013; 93: 681–766.
8. Holcman D., Schuss Z.: Time scale of diffusion in molecular and cellular biology. Journal of Physics A: Mathematical and Theoretical. 2014; 47 (17): 28.
9. Kennedy M.B.: Synaptic signaling in learning and memory. Cold Spring Harbor Perspectives in Biology. 2016; 8 (2): a016824.
10. Rymarczyk K., Makowska I., Pałka-Szafraniec K.: Plastyczność dorosłej kory mózgowej. Aktualności Neurologiczne. 2015; 15 (2): 80–87.
11. Maguire E.A., Woollett K., Spiers, H.J.: London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus. 2006; 16: 1091–1101.
12. Richardson F.M., Price C.J.: Structural MRI studies of language function in the undamaged brain. Brain Structure and Function. 2009; 213 (6): 511–523.
13. Giffin F., Mitchell D.E.: The rate of recovery of vision after early monocular deprivation in kittens. The Journal of Physiology (London). 1978; 274: 511–537.
14. Camina E., Güell F.: The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins. Frontiers in Pharmacology. 2017; 8: 438.
15. Sperling G.: The information available in brief visual presentations. Psychological Monographs. 1960; 74: 1–30.
16. Vandenbroucke A.R.E., Sligte I.G., Barrett A.B., Seth A.K., Fahrenfort J.J., Lamme V.A.F.: Accurate metacognition for visual sensory memory representations. Psychological Science. 2014; 25: 861–873.
17. Haber R.N.: The impending demise of the icon: a critique of the concept of iconic storage in visual information processing. Behavioral and Brain Science. 1983; 6: 1–54.
18. Jonides J., Lewis R.L., Nee D.E., Lustig C.A., Berman M.G., Moore K.S.: The mind and brain of short- term memory. Annual Review of Psychology. 2008; 59: 193–224.
19. Standing L.: Learning 10,000 pictures. Quarterly Journal of Experimental Psychology. 1973; 25: 207–222.
20. Ogmen H., Herzog M.H.: A New Conceptualization of Human Visual Sensory-Memory. Frontiers in Psychology. 2016; 7: 830.
21. Alberini C.M., Ledoux J.E.: Memory reconsolidation. Current Biology. 2013; 23: R746–750.
22. Nader K., Hardt O.: A single standard for memory: the case for reconsolidation. Nature Reviews Neuroscience. 2009; 10: 224–234.
23. Marchetti G.: Attention and working memory: two basic mechanisms for constructing temporal experiences. Frontiers in Psychology. 2014; 5: 880.
24. Morris R.G.: D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949. Brain Res Bull. 1999; 50 (5–6): 437.
25. Norris D.: Short-term memory and long-term memory are still different. Psychological Bulletin. 2017; 143 (9): 992–1009.
26. Nie J., Zhang Z., Wang B., et al.: Different memory patterns of digits: a functional MRI study. Journal of Biomedical Science. 2019; 26 (1): 22.
27. Alberini C.M.: The role of protein synthesis during the labile phases of memory: revisiting the skepticism. Neurobiology of Learning and Memory. 2008; 89: 234–246.
28. Eriksson J., Vogel E.K., Lansner A., Bergström F., Nyberg L.: Neurocognitive Architecture of Working Memory. Neuron. 2015; 88 (1): 33–46.
29. MacKay D.G., Shafto M., Taylor J.K., Marian D.E., Abrams L., Dyer J.R.: Relations between emotion, memory, and attention: Evidence from taboo Stroop, lexical decision, and immediate memory tasks. Memory & Cognition. 2004; 32: 474–487.
30. Burton L., Vardy S.B., Frohlich J., Dimitri D., Wyatt G., Rabin L.: Affective tasks elicit material-specific memory effects in temporal lobectomy patients. Journal of Clinical and Experimental Neuropsychology. 2004; 26: 1021–1030.
31. Döhnel K., Sommer M., Ibach B., Rothmayr C., Meinhardt J., Hajak G.: Neuronal correlates of emotional working memory in patients with mild cognitive impairment. Neuropsychologia. 2008; 46: 37–48.
32. Talmi D., Luk B.T.C., McGarry L.M., Moscovitch M.: The contribution of relatedness and distinct- iveness to emotionally-enhanced memory. Journal of Memory and Language. 2007; 56 (4), 555–574.
33. Rothermund K., Wentura D., Bak P.M.: Automatic attention to stimuli signalling chances and dangers: Moderating effects of positive and negative goal and action contexts. Cognition & Emotion. 2001; 15: 231–248.
34. Neisser U., Harsch N.: Phantom flashbulbs: false recollections of hearing the news about Challenger. In: Winograd E., Neisser U. eds. Affect and accuracy in recall: Studies of ‘flashbulb’ memories. Cambridge University Press, New York 1992; 9–31.
35. Geller E.S., Farris J.C., Post D.S.: Prompting a consumer behavior for pollution control. Journal of Applied Behavior Analysis. 1973; 6 (3): 367–376.
36. Meis J., Kashima Y.: Signage as a tool for behavioral change: Direct and indirect routes to understanding the meaning of a sign. PLOS One. 2017; 12 (8): e0182975.
37. Wirth M.M.: Hormones, stress, and cognition: The effects of glucocorticoids and oxytocin on memory. Adaptive Human Behavior and Physiology. 2015; 1: 177–201.
38. Kim E.J., Pellman B., Kim J.J.: Stress effects on the hippocampus: a critical review. Learning & Memory. 2015; 22 (9): 411–416.
39. Anderson A.K., Yamaguchi Y., Grabski W., Lacka D.: Emotional memories are not all created equal: evidence for selective memory enhancement. Learning & Memory. 2006; 13 (6): 711–718.
40. Zhu J., Nelson K., Toth J., Muscat J.E.: Nicotine dependence as an independent risk factor for atherosclerosis in the National Lung Screening Trial. BMC Public Health. 2019; 19: 103.
41. Lee H.S., Ghetti A., Pinto-Duarte A., Wang X., Dziewczapolski G., Galimi F., Huitron-Resendiz S., Pina-Crespo J.C., Roberts A.J., Verma I.M.: Astrocytes contribute to gamma oscillations and recognition memory. Proccedings of the National Academy of Science of the United States of America. 2014; 111: E3343–E3352.
42. Pinto-Duarte A., Roberts A.J., Ouyang K., Sejnowsk T.J.: Impairments in remote memory caused by the lack of Type 2 IP3 receptors. GLIA. 2019; 67 (10): 1976–1989.
Go to article

Authors and Affiliations

Paulina Fałek
1
Artur Fałek
1
Monika Kager
2
Richard Kager
3
Piotr Walkowicz
2
Marcin Kubiak
2
Elżbieta Starosławska
2
Franciszek Burdan
2 4

  1. Independent Public Healthcare, Puławy, Poland
  2. St. John’s Cancer Center, Lublin, Poland
  3. Public Independent Clinical Hospital Number 4, Lublin, Poland
  4. Human Anatomy Department, Medical University of Lublin, Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Tenosynovial Giant Cell Tumor (TGCT) is a group of typically benign lesions arising from the synovium of joints, bursae and tendon sheaths. Depending on their growth pattern and clinical course, they are divided into localized and diffuse types. It is predominantly caused by a mutation in the stromal cells of the synovial membrane leading to overexpression of the colony stimulating factor 1 that recruits CSF1R-expressing cells of the mononuclear phagocyte lineage into the tumor mass. The lesions contain mainly histiocyte-like and synovial cells accompanied by varying numbers of multinucleated giant cells, mononuclear cells, foam cells, inflammatory cells and hemosiderin deposits. The gold standard for detect-ing and monitoring the disease is MRI, where the characteristic hemosiderin accumulation can be best appreciated, but it is a histological examination that is most conclusive. The main treatment is surgical resection of all pathological tissue, but radio- and chemotherapy are also viable options for certain groups of patients.
Go to article

Authors and Affiliations

Monika Kager
1
Richard Kager
2
Paulina Fałek
3
Artur Fałek
3
Grzegorz Szczypiór
4
Joanna Niemunis-Sawicka
4 5
Ludomira Rzepecka-Wejs
6
Elżbieta Starosławska
1
Franciszek Burdan
1 7

  1. Radiology Department, St Johns’ Cancer Center, Lublin, Poland
  2. Public Independent Clinical Hospital Number 4, Lublin, Poland
  3. Independent Public Healthcare, Puławy, Poland
  4. MRI Unit of Maritime Medical Center, Gdańsk, Poland
  5. 2nd Radiology Department, Medical University of Gdańsk, Gdańsk, Poland
  6. Goris-Med, Gdańsk, Poland
  7. Human Anatomy Department, Medical University of Lublin, Lublin, Poland

This page uses 'cookies'. Learn more