Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents a precise method for the orientation process of NiMnGa-based single crystals. For this method, a scanning electron microscope equipped with an EBSD camera and a heating stage allowing temperatures exceeding 873 K was used. The orientation process was carried out in both the high-temperature austenite phase and in the room-temperature martensite phase. The facilities allowed for determining the orientation of a single grain of austenite at elevated temperatures as well as the orientation of particular martensitic variants at room temperature. A practically perfect cubic orientation was obtained in the austenitic case with a deviation of about 1° while the samples oriented in the martensitic phase deviated from the desired orientation by 4.5-5.2°. Additionally, the training process of single crystals was carried out in order to show the influence of the orientation process on twinning stress.
Go to article

Authors and Affiliations

A. Szewczyk
1
ORCID: ORCID
M. Faryna
1
ORCID: ORCID
A. Wójcik
1
ORCID: ORCID
Wojciech Maziarz
ORCID: ORCID
R. Chulist
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Metal-intermetallic layered (MIL) composites attract considerable attention due to their remarkable structural and ballistic performance. This study aimed to develop a Ti/Al-based multilayered MIL material by adding ceramic powders, since they can improve the composite’s impact resistance. To this end, an experiment was conducted which a stack of alternating Ti and Al sheets bonded by hot pressing; Ti/Al multilayers containing additional layers of Al2O3 and SiC powders were also produced. The samples obtained were examined using electron microscopy techniques. The clads’ mechanical properties were investigated using a Charpy hammer. In the reaction zone, only one intermetallic phase occurred: the Al3Ti phase. The model with an additional Al2O3 layer showed the highest impact energy. None of the Ti/Al clads broke during the Charpy impact test, a result proving their high ductility.
Go to article

Bibliography

[1] I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing, Mater. Design 35, 225-234 (2012). DOI: https://doi.org/10.1016/j.matdes.2011.09.030
[2] F. Foadian, M. Soltanieh, M. Adeli, M. Etminanbakhsh, A Study on the Formation of Intermetallics During the Heat Treatment of Explosively Welded Al-Ti Mulitlayers, Metall. Mater. Trans. A 45A, 1823 (2014). DOI: https://doi.org/10.1007/s11661-013-2144-6
[3] H. Paul, Ł. Maj, M. Prażmowski, A. Gałka, M. Miszczyk, P. Petrzak, Microstructure and mechanical properties of multilayered Al/Ti composites produced by explosive welding, Procedia Manufacturing 15, 1391-1398 (2018). DOI: https://doi.org/10.1016/j.promfg.2018.07.343
[4] D.M. Fronczek, R. Chulist, Z. Szulc, J. Wojewoda-Budka, Growth kinetics of TiAl3 phase in annealed Al/Ti/Al explosively welded clads, Mater. Lett. 198, 160-163 (2017). DOI: https://doi.org/10.1016/j.matlet.2017.04.025
[5] F. Kong, Y. Chen, D. Zhang, Interfacial microstructure and shear strength of Ti-6Al-4V/TiAl laminate composite sheet fabricated by hot packed rolling, Mater. Design 32, 3167-3172 (2011). DOI: https://doi.org/10.1016/j.matdes.2011.02.052
[6] H. Xiao, Z. Qi, C. Yu, C. Xu, Preparation and properties for Ti/ Al clad plates generated by differential temperature rolling, J. Mater. Process. Tech. 249, 285-290 (2017). DOI: https://doi.org/10.1016/j.jmatprotec.2017.06.013
[7] M. Fan, Z. Luo, Z. Fu, X. Guo, J. Tao, Vacuum hot pressing and fatigue behaviors of Ti/Al laminate composites, Vacuum 154, 101- 109 (2018). DOI: https://doi.org/10.1016/j.vacuum.2018.04.047
[8] L. Qin, M. Fan, X. Guo, J. Tao, Plastic deformation behaviors of Ti-Al laminated composite fabricated by vacuum hot-pressing, Vacuum 155, 96-107 (2018). DOI: https://doi.org/10.1016/j.vacuum.2018.05.021
[9] J . Li, K.H. Wang, K. Zhang L.L. Kang, H. Liang, Mechanism of interfacial reaction between Ti and Al-ceramic, Mater. Design 105, 223-233 (2016). DOI: https://doi.org/10.1016/j.matdes.2016.05.073
[10] G .H.S.F.L. Carvalho, I. Galvão, R. Mendes, R.M. Leal, A. Loureiro, Explosive welding of aluminium to stainless steel, J. Mat. Process. Tech. 262, 340-349 (2018). DOI: https://doi.org/10.1016/j.jmatprotec.2018.06.042
[11] I. D. Zakharenko, Critical conditions in detonation welding, Fizika Goreniya i Vzryva 8 (3), 422-427 (1972).
[12] M. Tayyebi, D. Rahmatabadi, M. Adhami, R. Hashemi, Influence of AR B technique on the microstructural, mechanical and fracture properties of the multilayered Al1050/Al5052 composite reinforced by SiC particles, J. Mater. Res. Tech. 8 (5), 4287-4301 (2019). DOI: https://doi.org/10.1016/j.jmrt.2019.07.039
[13] M.N. Yuan, Lili Li, Zh J. Wang, Study of the microstructure modulation and phase formation of Ti-Al3Ti laminated composites, Vacuum 157, 481-486 (2018). DOI: https://doi.org/10.1016/j.vacuum.2018.09.002
Go to article

Authors and Affiliations

W. Kowalski
1
ORCID: ORCID
H. Paul
1
ORCID: ORCID
P. Petrzak
1
ORCID: ORCID
Ł. Maj
1
ORCID: ORCID
I. Mania
1
ORCID: ORCID
M. Faryna
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science , Polish Academy of Sciences , 25 Reymonta Str., 30-059 Kraków, Poland

This page uses 'cookies'. Learn more