Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Selective laser melting is one of the additive manufacturing technologies that is used to produce complex-shaped components for applications in the automotive industry. The purpose of the changes in the design, technology, and material tests was to make a steering gear housing using the SLM method. The steering gear housing was produced by the pressure casting method using an AlSi9Cu3(Fe) alloy. The construction of this housing is adapted to the specifics of left-hand traffic. The change in technology was related to the change of the position of the steering system from right-hand to left-hand and the demand for a limited number of gear housings. It was necessary to make a virtual model of the housing on the basis of the part that was removed from the vehicle. In SLM technology, the AlSi10Mg aluminum alloy was used as a raw material in the form of CL 32Al gas-atomized powder. After the SLM process was completed, the housings were subjected to heat treatment. The AlSi10Mg alloy fabricated by the SLM method after heat treatment is characterized by good plasticity and an average value of tensile strength. The last stage was to check the geometry of the SLM housing with a 3D scanner. As a result, a map of the dimensional deviations from the nominal values was obtained. This data was used to modify the CAD model before the next fabrication process.
The use of 3D printing technology allowed for the quick production of elements. The time to develop the technology and the production of the first two gear housings based on a 3D model was seven days.
Go to article

Bibliography

[1] Additive Manufacturing  General Principes  Terminology (2015). ISO/ASTM 2900:2015. BSI: London, UK.
[2] Frazier, W.E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance. 23, 1917-1928. DOI: 10.1007/s11665-014-0958-z.
[3] Sercombe, T.B. & Li, X. (2016). Selective laser melting of aluminum and aluminum metal matrix composites. Review. Materials Technology. 31(2), 77-85. DOI: 10.1179/1753555715Y.0000000078.
[4] Yadroitsev, I., Yadroitsava, I., Bertrand, P. & Smurov, I. (2012). Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyping Journal. 18(3), 201-208. DOI: 10.1108/13552541211218117.
[5] Olakanmi, E.O. (2013). Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties. Journal of Materials Processing Technology. 213(8), 1387-1405. DOI: 10.1016/j.jmatprotec.2013.03.009.
[6] Gibson, I., Rosen, D.W. & Stucker, B. (2010). Additive Manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing. Springer New York Heidelberg Dordrecht London. DOI: 10.1007/978-1-4419-1120-9.
[7] Kempen, K., Thijs, L., Van Humbeeck, J. & Kruth, J.P. (2015). Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterization. Materials Science and Technology. 31(8), 917-923, DOI: 10.1179/1743284714Y.0000000702.
[8] Aboulkhair, N.T., Everitt, N.M., Ashcroft, I. & Tuck, C.N. (2014). Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing. 1-4, 77-86. DOI: 10.1016/j.addma.2014.08.001.9.
[9] Read, N., Wang, W. & Essa, K. & Attallah, M. (2015). Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Materials & Design. 65, 417-424. DOI: 10.1016/J.MATDES.2014.09.044.
[10] Lam, L.P., Zhang, D.Q., Liu, Z.H. & Chua, C.K. (2015). Phase analysis and microstructure characterisation of AlSi10Mg parts produced by Selective Laser Melting. Virtual and Physical Prototyping. 10 (4), 207-215. DOI: 10.1080/17452759.2015.1110868.
[11] EOS Material data sheet, EOS Aluminium AlSi10Mg. www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material- datasheet/aluminium/alsi10mg-9011-0024-m400_flexline_material_data_sheet_03-18_en.pdf.
[12] Concept Laser a GE Additive Company, CL 32 Al. Aluminium alloy. www.ge.com/additive/sites/default/files/ 2018-12/CL 32AL_DS_DE_US_v1.pdf.
[13] Li, W., Li, S., Liu, J., Zhang, Y., Wei, Q., Yan, C. & Shi, Y. (2016). Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Materials Science and Engineering A. 663, 116-125. DOI: 10.1016/j.msea.2016.03.088.
[14] Thijs, L., Kempen, K., Kurth, J.P. & Van Humbeeck, J. (2013). Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Materialia. 61(5), 1809-1819. DOI: 10.1016/j.actamat.2012.11.052.
[15] Brandl, E., Heckenberger, U., Holzinger, V. & Buchbinder, D. (2012). Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Materials & Design. 34, 159-169. DOI: 10.1016/j.matdes.2011.07.067.
[16] Piekło, J., Garbacz-Klempka, A., Żuczek, R. & Małysza, M. (2019). Computational modeling of fracture toughness of Al-Si, and Al-Zn-Mg-Cu alloys with detected porosity. Journal of Materials Engineering and Performance. 28, 1373-1381. DOI: 10.1007/s11665-019-03899-2.
[17] Zych, J., Piekło, J., Maj, M., Garbacz-Klempka, A. & Piękoś, M. (2019). Influence of structural discontinuities on fatigue life of 4XXX0-series aluminum alloys. Archives of Metallurgy and Materials. 64(2), 765-771. DOI: 10.24425/amm.2019.127611.
[18] Leary, M., Maconachie, T., Sarker, A. & Faruque, O. (2019). Mechanical and thermal characterisation of AlSi10Mg SLM block suport structures. Materials and Design. 183(5), 108-138. DOI: 10.1016/j.matdes.2019.108138.
[19] EOS Material data sheet, EOS MaragingSteel MS1. www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/werkzeugstahl_ms1_cx/ms1/ms-ms1-m280_m290_400w_material_data_sheet_05-14_en.pdf
[20] Waszkiewicz, S., Fic, M., Perzyk, M. & Szczepanik, J. (1986). Die and pressure molds. Warszawa: WNT. (in Polish).
[21] Piekło, J. (2019). Application of SLM additive manufacturing method in production of selected cooling system elements in die casting molds. Kraków: Wydawnictwo Naukowe Akapit. (in Polish).
[22] Piekło, J. & Maj, M. (2014). Methods of additive manufacturing used in the technology of skeleton castings. Archives of Metallurgy and Materials, 2014 ,59, 699-702. DOI: 10.2478/amm-2014-0114.
[23] Bonderek, Z. & Chromik, S. (2006). Metal pressure die-casting and plastic injection molding. Kraków: Wydawnictwo Naukowe Akapit. (in Polish).
Go to article

Authors and Affiliations

J. Piekło
1
ORCID: ORCID
A. Garbacz-Klempka
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Plasma oxidation, similarly to anodic oxidation (anodizing), are classified as electrochemical surface treatment of metals such as Al, Mg, Ti and their alloys. This type of treatment is used to make surface of castings, plastically processed products, shaped with incremental methods to suitable for certain requirements. The most important role of the micro plasma coating is to protect the metal surface against corrosion. It is well known that coating of aluminium alloys containing silicon using anodic oxidation causes significant difficulties. They are linked to the eutectic nature of this alloy and result in a lack of coverage in silicon-related areas. The coating structure in these areas is discontinuous. In order to eliminate this phenomenon, it is required to apply oxidation coatings using the PEO (Plasma Electrolytic Oxidation) method. It allows a consistent, crystalline coating to be formed. This study presents the mechanical properties of the coatings applied to Al-Si alloy using the PEO method. As part of the testing, the coating thickness, microhardness and scratch resistance were determined. On the basis of the results obtained, it was concluded that the thickness of the coatings complies with the requirements of conventional anodizing. Additionally, microhardness values exceeded the results obtained with standard methods.
Go to article

Bibliography

[1] Famiyeh, L. & Huang, H. (2019). Plasma electrolytic oxidation coatings on aluminum alloys: microstructures, properties, and applications. Modern Concepts in Material Science. 2(1), 1-13. DOI: 10.33552/MCMS.2019.02.000526.
[2] Sieber, M., Simchen, F., Morgenstern, R., Scharf, I. & Lampke, T. (2018). Plasma electrolytic oxidation of high-strength aluminium alloys-substrate effect on wear and corrosion performance. Metals. 8(5), 356. DOI: 10.3390/met8050356.
[3] Matykina, E., Arrabal, R., Mohedano, M., Mingo, B., Gonzalez, J., Pardo, A. & Merino, M.C. (2017). Recent advances in energy efficient PEO processing of aluminium alloys. Transactions of Nonferrous Metals Society of China. 27(7) 1439-1454. DOI: 10.1016/S1003-6326(17)60166-3.
[4] Agureev, L., Savushkina, S., Ashmarin, A., Borisov, A., Apelfeld, A., Anikin, K., Tkachenko, N., Gerasimov, M., Shcherbakov, A., Ignatenko, V. & Bogdashkina, N. (2018). Study of plasma electrolytic oxidation coatings on aluminum composites. Metals. 8(6), 459. DOI: 10.3390/met8060459.
[5] Lakshmikanthan, A., Bontha, S., Krishna, M., Praveennath, G.K. & Ramprabhu, T. (2019). Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles. Journal of Alloys and Compounds. 786, 570-580. DOI: 10.1016/j.jallcom.2019.01.382.
[6] Lakshmikanthan, A., Prabhu, T.R., Babu, U.S., Koppad, P.G., Gupta, M., Krishna, M. & Bontha, S. (2020). The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites. Journal of Materials Research and Technology. 9(3), 6434-6452. DOI: 10.1016/j.jmrt.2020.04.027.
[7] Rogov, A., Lyu, H., Matthews, A. & Yerokhin, A. (2020). AC plasma electrolytic oxidation of additively manufactured and cast AlSi12 alloys. Surface and Coatings Technology, 399, 126116. DOI: 10.1016/j.surfcoat.2020.126116.
[8] Li, K., Li, W., Zhang, G., Zhu, W., Zheng, F., Zhang, D. & Wang, M. (2019). Effects of Si phase refinement on the plasma electrolytic oxidation of eutectic Al-Si alloy. Journal of Alloys and Compounds. 790, 650-656. DOI: 10.1016/j.jallcom.2019.03.217.
[9] Gencer, Y., Tarakci, M., Gule, A.E. & Oter C.Z. (2014). Plasma Electrolytic Oxidation of Binary Al-Sn Alloys. Acta Physica Polonica A. 125(2), 659-663. DOI: 10.12693/APhysPolA.125.659.
[10] Moszczyński, P. & Trzaska, M. (2011). Shaping of oxide layers on the aluminum surface by plasma electrochemical oxidation. Elektronika: konstrukcje, technologie, zastosowania. 52(12), 96-99. (in Polish).
[11] He, J., Cai, Q.Z., Luo, H.H., Yu, L. & Wei, B.K. (2009). Influence of silicon on growth process of plasma electrolytic oxidation coating on Al–Si alloy. Journal of Alloys and Compounds. 471(1-2), 395-399. DOI: 10.1016/ j.jallcom.2008.03.114.
[12] Blawert, C., Karpushenkov, S.A., Serdechnovaa, M., Karpushenkava, L.S. & Zheludkevicha, M.L. (2020). Plasma electrolytic oxidation of zinc alloy in a phosphate-aluminate electrolyte. Applied Surface Science. 505, 144552, DOI: 10.1016/j.apsusc.2019.144552.
[13] Dehnavi, V. (2014). Surface Modification of Aluminum Alloys by Plasma Electrolytic Oxidation. A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy The School of Graduate and Postdoctoral Studies, The University of Western Ontario London, Ontario, Canada.
[14] Zhang, Y., Xu, H., Yang, Y. (2007). Study on the optimization of pulse frequency in the micro arc oxidation of aluminum alloys. Proceedings of Vacuum Metallurgy and Surface Engineering. Beijing: Electronics Industry Press. 33−40.
[15] Habazaki, H., Onodera, T., Fushimi, K., Konno, H. & Toyotake, K. (2007). Spark anodizing of β-Ti alloy for wear resistant coating. Surface and Coatings Technology. 201(21), 8730-8737. DOI: 10.1016/j.surfcoat.2006.05.041.
[16] Kurze, P., Krysmann, W. & Schneider, H.G. (2006). Application fields of ANOF layers and composites. Crystal Research and Technology. 21(12), 1603-1609. DOI: 10.1002/crat.2170211224.
[17] Butyagin, P.I., Khorkhryakov, Y.V. & Mamaev, A.I. (2003). Microplasma systems for creating coatings on aluminium alloys. Materials Letters. 57(11), 1748-1751. DOI: 10.1016/S0167-577X(02)01062-5.
[18] Sonova, A.I. & Terleeva, O.P. (2008). Morphology, structure, and phase composition of microplasma coatings formed on Al−Cu−Mg alloy. Protection of Metals. 44(1), 65-75. DOI: 10.1134/S0033173208010098.
[19] Shihai, C., Jiunmin, H., Weijing, L., Suk-Bong, K. & Jung-Moo, L. (2006). Study on wear behavior of plasma electrolytic oxidation coatings on aluminum alloy. Rare Metals. 25(6), 141-145. DOI: 10.1016/S1001-0521(08)60069-8.
[20] Dai, L., Li, W., Zhang, G., Fu, N. & Duan, Q. (2017). Anti-corrosion and wear properties of plasma electrolytic oxidation coating formed on high Si content Al alloy by sectionalized oxidation mode. In IOP Conf. Series: Materials Science and Engineering, 19–21 November 2016 (167, 012063), Sanya, China: IOP Publishing Ltd. DOI: 10.1088/1757-899X/167/1/012063.
[21] Li, Q.B., Liu, C.C., Yang, W.B. & Liang, J. (2017). Growth mechanism and adhesion of PEO coatings on 2024Al alloy. Surface Engineering. 33(10), 760-766. DOI: 10.1080/02670844.2016.1200860.
[22] Ayday, A. & Durman, M. (2015). Growth characteristics of plasma electrolytic oxidation coatings on aluminum alloys. Acta Physica Polonica A. 127(4), 886-887, DOI: 10.12693/APhysPolA.127.886.
[23] Dehnavi, V., Shoesmith, D.W., Luan, B.L., Yari, M. & Liu, X.Y. & Rohani, S. (2015). Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy – The effect of the PEO process stage. Materials Chemistry and Physics. 161, 49-58. DOI: 10.1016/j.matechemphys.2015.04.058.
[24] Gębarowski, W. & Pietrzyk, S. (2012). Plasma electrolytic oxidation of aluminum process technology outline. Rudy i Metale Nieżelazne. 57(4), 237-242. (in Polish).
[25] Duanjie, L. (2014). Scratch hardness measurement using mechanical tester. Retrieved February 12, 2020, from http://nanovea.com/app-notes/scratch-hardness-measurement.pl
[26] Hussein, R.O. & Northwood, D.O. (2014). Production of anti-corrosion coatings on light alloys (Al, Mg, Ti) by plasma-electrolytic oxidation (PEO). In Mahmood Aliofkhazraei (Eds.), Developments in Corrosion Protection (pp. 201-238). London, UK: IntechOpen Limited. DOI: 10.5772/57171.
[27] Wredenberg, F. & Larsson, P.-L. (2009). Scratch testing of metals and polymers: Experiments and numerics. Wear. 266(1-2), 76-83. DOI: 10.1016/j.wear.2008.05.014.
[28] Hussein, R.O., Northwood, D.O. & Nie, X. (2012). The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy. Journal of Alloys and Compounds. 541, 41-48, DOI: 10.1016/j.jallcom.2012.07.003.
[29] Matykina, E., Arrabal, R., Skeldon, P. & Thompson, G.E. (2009). Investigation of the growth processes of coatings by AC plasma electrolytic oxidation of aluminum. Electrochimica Acta. 54(27), 6767-6778.
[30] Sharift, H., Aliofkhazraei, M. & Darband, G.B. (2018). A review on adhesion strength of PEO coatings by scratch test method. Surface Review and Letters. 25(3), 1830004. DOI: 10.1142/S0218625X18300046.
Go to article

Authors and Affiliations

P. Długosz
1
ORCID: ORCID
A. Garbacz-Klempka
2
ORCID: ORCID
J. Piwowońska
1
P. Darłak
3
ORCID: ORCID
M. Młynarczyk
3

  1. Lukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopiańska Str. 30-418 Cracow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Kraków, Poland
  3. AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland

This page uses 'cookies'. Learn more