Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this research, the quality of manufactured cast metal-ceramic foams (manufactured using blowing gas) was tested. The causes responsible for defect formation in the composite foams and their consequences were analyzed using the FMEA (Failure Mode and Effects Analysis) method, which is a useful tool for minimizing losses caused by low product quality. This method involves analytically determining correlations between the cause and consequences of potential product defects, and it takes into account the criticality factor (risk). The FMEA analysis showed that pore breaks were the most "critical defect" (with the highest number of effects on the product, the Risk Priority Number, affecting the quality of the composite foam). The second most critical defect was discontinuities in the foam frame structure. Destruction or damage to the foam structure (although very rare) deprived the composite foam of its primary function, which is to reinforce the product. The third most critical defect was non-uniform foam pore size.
Go to article

Bibliography

[1] Duarte, I. & Ferreira, J.M.F. (2016). Composite and nanocomposite metal foams. Materials. 9(2), 79. DOI: 10.3390/ma9020079.
[2] Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G. (2000). Metal Foams. A Design Guide. (1st ed.). Woburn, MA, USA: Butterworth Heinemann.
[3] Marx, J., Portanova, M. & Rabiei A. (2019). Ballistic performance of composite metal foam against large caliber threats. Composite Structures 225, 111032. DOI: 10.1016/j.compstruct.2019.111032.
[4] Banhart, J. (2001). Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science. 46(6), 559-632. DOI: 10.1016/S0079-6425(00)00002-5.
[5] Orbulov, I.N., Szlancsik, A., Kemény, A. & Kincses, D. (2020). Compressive mechanical properties of low-cost, aluminium matrix syntactic foams. Composites Part A: Applied Science and Manufacturing 135, 105923. DOI: 10.1016/j.compositesa.2020.105923.
[6] Bejger A., Chybowski L. & Gawdzińska K. (2018). Utilizing elastic waves of acoustic emission to assess the condition of spray nozzles in a marine diesel engine. Journal of Marine Engineering & Technology. 17(3), 153-159. DOI: 10.1080/20464177.2018.1492361.
[7] Chunhui, K., Liubiao C., Xianlin, W., Yuan, Z. & Junjie, W. (2018). Thermal conductivity of open cell aluminum foam and its application as advanced thermal storage unit at low temperature. Rare Metal Materials and Engineering. 47(4), 1049-1053. DOI: 10.1016/S1875-5372(18)30118-8.
[8] Banhart, J. & Seeliger, H.W. (2008). Aluminium foam sandwich panels: manufacture, metallurgy and applications. Advanced Engineering Materials. 10(9), 793-802. DOI: 10.1002/adem.200800091.
[9] Lehmhus, D., Weise, J., Szlancsik, A. & Orbulov, I.N. (2020. Fracture toughness of hollow glass microsphere-filled iron matrix syntactic foams. Materials. 13(11), 2566. DOI: 10.3390/ma13112566.
[10] Czarnecka-Komorowska, D., Grześkowiak, K., Popielarski, P., Barczewski, M., Gawdzińska, K. & Popławski, M. (2020). Polyethylene wax modified by organoclay bentonite used in the lost-wax casting process: processing−structure−property relationships. Materials. 13(10), 10. DOI: 10.3390/ma13102255.
[11] Przestacki, D., Majchrowski, R. & Marciniak-Podsadna, L. (2016). Experimental research of surface roughness and surface texture after laser cladding. Applied Surface Science. 388(A), 420-423. DOI: 10.1016/j.apsusc.2015.12.093.
[12] Zhou, J., Gao, Z., Cuitino, A.M. & Soboyejo, W.O. (2004). Effects of heat treatment on the compressive deformation behavior of open cell aluminum foams. Materials Science and Engineering A. 386(1-2), 118-128. DOI: 10.1016/ j.msea.2004.07.042.
[13] Yamada, Y., Shimojima, K., Sakaguchi, Y., Mabuchi, M., Nakamura, M. & Asahina, T. (2000). Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure. Materials Science and Engineering A. 280(1), 225-228. DOI: 10.1016/S0921-5093(99)00671-1.
[14] Xia, X.C., Chen, X.W., Zhang, Z., Chen, X., Zhao, W.M., Liao, B. & Hur, B. (2013). Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam. Journal of Magnesium and Alloys. 1(4), 330-335. DOI: 10.1016/j.jma.2013.11.006.
[15] García-Moreno, F. (2016). Commercial applications of metal foams: their properties and production. Materials. 9(2), 85. DOI: 10.3390/ma9020085.
[16] Banhart, J. (2013). Light-metal foams-history of innovation and technological challenges. Advanced Engineering Materials. 15(3), 82-111. DOI: 10.1002/adem.201200217.
[17] Neville, B.P. & Rabiei A. (2008). Composite metal foams processed through powder metallurgy. Materials and Design. 29(2), 388-396. DOI: 10.1016/j.matdes.2007.01.026.
[18] Fuganti, A., Lorenzi, L., Grønsund, A. & Langseth, M. (2000). Aluminum foam for automotive applications. Advanced Engineering Materials. 2(4), 200-204. Doi:10.1002/(SICI)1527-2648(200004)2:4<200::AID-ADEM200>3.0.CO;2-2.
[19] Bhattacharya, A., Calmidi, V.V. & Mahajan, R.L. (2002). Thermophysical properties of high porosity metal foams. International Journal of Heat and Mass Transfer. 45(5), 1017-1031. DOI: 10.1016/S0017-9310(01)00220-4.
[20] Miyoshi, T., Itoh M., Akiyama, S. & Kitahara A. (2000). ALPORAS Aluminum foam: production process, properties, and applications. Advanced Engineering Materials. 2(4), 179-183. DOI: 10.1002/(SICI)1527-2648(200004)2:4179:: AID-ADEM179>3.0.CO;2-G.
[21] Sereni, J.G. (2001). Magnetic systems: specific heat. in: Encyclopedia of Materials: Science and Technology. (4986-4993). Elsevier.
[22] Reay, D. (2013). Metal foams: fundamentals and applications. Applied Thermal Engineering. 61(2), 1. DOI: 10.1016/j.applthermaleng.2013.07.002.
[23] Businessinsider.com: million metal foam market analysis, (2017). Retrieved November 20, 2020, from https://markets.businessinsider.com/news/stocks/global-100-million-metal-foam-market-analysis-2017-1009247173
[24] Gawdzińska, K., Grabian, J., Szweycer, M. (2008). Patent No. 211439. Method of producing structural elements from foamed metals.
[25] Kaczyński, P., Ptak M & Gawdzińska, K. (2020). Energy absorption of cast metal and composite foams tested in extremely low and high-temperatures. Materials & Design. 196. DOI: 10.1016/j.matdes.2020.109114.
[26] Aczel, A.D. (2005). Statistics in management. Warszawa: PWN. (in Polish).
[27] Hamrol, A., Mantura W. (2006). Quality Management: Theory and practice (3rd ed.). Warszawa: PWN. (in Polish).
[28] Hamrol, A. (2007). Quality management with examples. Warszawa: PWN. (in Polish).
[29] Gawdzińska, K. (2018). Assessment of the quality of cast material-ceramic composite foams (in Polish). Archives of Foundry Engineering. Katowice–Gliwice: Komisja Odlewnictwa PAN.
[30] Sika, R., Rogalewicz, M., Popielarski, P., Czarnecka-Komorowska, D., Przestacki, D., Gawdzińska, K. & Szymański, P. (2020). Decision support system in the field of defects assessment in the metal matrix composites castings. Materials. 13(16), 3552. DOI: 10.3390/ma13163552.
[31] Gawdzińska, K. (2015). Study of metallic-ceramic composite foams with application of the computer tomograph. Metalurgija. 54 (4), 671-674.
[32] Sobczak, J. (1998). Metal monolithic and composite foams and gazars. A compendium of knowledge about metal cell structures used in modern technical design. Kraków: Instytut Odlewnictwa. (in Polish). [33] Babcsán, N., Leilmeier, D., Degischer, H.P., Flankl, H.J. (2003). In: J. Banhart, N.A. Fleck, A. Mortensen (Eds.) MetFoam 2003: Proceedings of the 3rd International Conference on Cellular Metals and Metal Foaming Technology (pp. 101-106). Berlin (Germany): MIT Pub.
Go to article

Authors and Affiliations

P. Popielarski
1
ORCID: ORCID
R. Sika
1
D. Czarnecka-Komorowska
1
ORCID: ORCID
P. Szymański
1
ORCID: ORCID
M. Rogalewicz
1
K. Gawdzińska
2
ORCID: ORCID

  1. Institute of Materials Technology, Poznan University of Technology Piotrowo 3, 61-138 Poznań, Poland
  2. Faculty of Marine Engineering, Maritime University of Szczecin, Willowa 2-4, 71-650 Szczecin, Poland

This page uses 'cookies'. Learn more