Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

It is well known that nonlinear ultrasound is sensitive to some microstructural characteristics in material. This paper investigates the dependence of the nonlinear ultrasonic characteristic on Al-Cu precipitation in heat-treated 2219-T6 aluminum alloy specimens. The specimens were heat-treated at a constant temperature 155℃ for different exposure times up to 1800 min. The nonlinearity parameter and the changes of precipitates phase were measured for each of the artificially aged specimens. The experimental results show fluctuations in the fractional change in nonlinear parameter (Δβ/β0) and the changes of precipitated phase over the aging time, but with an interesting correlation between the fractional change in nonlinear parameter (Δβ/β0) and the change of precipitate phase over the aging time. Through the experimental data results, the fractional change in nonlinear parameter (Δβ/β0) and the change of precipitate phase over the aging time were fitted curve. Microstructural observations confirmed that those fluctuations are due to the formation and evolution of precipitates that occur in a unique precipitation sequence in this alloy. These results suggest that the nonlinear ultrasonic measurement can be useful for monitoring second phase precipitation in the 2219-T6 aluminum alloy.
Go to article

Bibliography

1. Balasubramaniam K., Valluri J.S., Prakash R.V. (2011), Creep damage characterization using a low amplitude nonlinear ultrasonic technique, Materials Characterization, 62(3): 275–286, doi: 10.1016/j.matchar.2010.11.007.
2. Benal M.M., Shivanand H.K. (2007), Effects of reinforcements content and ageing durations on wear characteristics of Al (6061) based hybrid composites, Wear, 262(5–6): 759–763, doi: 10.1016/j.wear.2006.08.022.
3. Buha J., C R.N., Crosky A.G., Hono K. (2007), Secondary precipitation in an Al-Mg-Si-Cu alloy, Acta Materialia, 55(9): 3015–3024, doi: 10.1016/j.actamat.2007.01.006.
4. Cantrell J.H., Yost W.T. (1997), Effect of precipitate coherency strains on acoustic harmonic generation, Journal of Applied Physics, 81(7): 2957–2962, doi: 10.1063/1.364327.
5. Cantrell J.H., Yost W.T. (2000), Determination of precipitate nucleation and growth rates from ultrasonic harmonic generation, Applied Physics Letters, 77(13): 1952–1954, doi: 10.1063/1.1311951.
6. Cantrell J.H., Zhang X.G. (1998), Nonlinear acoustic response from precipitate-matrix misfit in a dislocation network, Journal of Applied Physics, 84(10): 5469–5472, doi: 10.1063/1.368309.
7. Dace G.E., Thompson R.B., Brasche L.J.H., Rehbein D.K., Buck O. (1991), Nonlinear acoustics, a technique to determine microstructural changes in materials, [in:] Review of Progress in Quantitative Nondestructive Evaluation, Thompson D.O., Chimenti D.E. [Eds], Vol. 10B, pp. 1685–1692, Springer, Boston, MA, doi: 10.1007/978-1-4615-3742-7_71.
8. Demir H., Gündüz S. (2009), The effects of aging on machinability of 6061 aluminium alloy, Materials & Design, 30(5): 1480–1483, doi: 10.1016/j.matdes.2008.08.007.
9. Edwards G.A., Stiller K., Dunlop G.L., Couper M.J. (1998), The precipitation sequence in Al-Mg-Si alloys, Acta Materialia, 46(11): 3893–3904, doi: 10.1016/S1359-6454(98)00059-7.
10. Fang X., Song M., Li K., Du Y. (2010), Precipitation sequence of an aged Al-Mg-Si alloy, Journal of Mining and Metallurgy B: Metallurgy, 46(2): 171–180, doi: 10.2298/JMMB1002171F.
11. Granato A., Lüke K. (1956), Theory of mechanical damping due to dislocations, Journal of Applied Physics, 27(6): 583–593, doi: 10.1063/1.1722436.
12. Hikata A., Chick B.B., Elbaum C. (1965), Dislocation contribution to the second harmonic generation of ultrasonic waves, Journal of Applied Physics, 36(1): 229–236, doi: 10.1063/1.1713881.
13. Kim C.S., Jhang K.Y. (2012), Fatigue-induced micro-damage characterization of austenitic stainless steel 316 using innovative nonlinear acoustics, Chinese Physics Letters, 29(6): 060702, doi: 10.1088/0256-307x/29/6/060702.
14. Kim J., Jhang K.Y. (2013), Evaluation of ultrasonic nonlinear characteristics in heat-treated aluminum alloy (Al-Mg-Si-Cu), Advances in Materials Science and Engineering, 2013: Article ID 407846, doi: 10.1155/2013/407846.
15. Kim J., Song D.G., Jhang K.Y. (2016), Absolute measurement and relative measurement of ultrasonic nonlinear parameters, Research in Nondestructive Evaluation, 28(4): 211–225 doi: 10.1080/09349847.2016.1174322.
16. Li P., Yost W.T., Cantrell J.H., Salama K. (1985), Dependence of acoustic nonlinearity parameter on second phase precipitates of aluminum alloys, IEEE 1985 Ultrasonics Symposium, pp. 1113–1115, doi: 10.1109/ULTS-YM.1985.198690.
17. Metya A., Ghosh M., Parida N., Sagar S.P. (2008), Higher harmonic analysis of ultrasonic signal for ageing behaviour study of C-250 grade maraging steel, NDT & E International, 41(6): 484–489, doi: 10.1016/j.ndteint.2008.01.008.
18. Miao W.F., Laughlin D.E. (1999), Precipitation hardening in aluminum alloy 6022, Scripta Materialia, 40(7): 873–878, doi: 10.1016/S1359-6462(99)00046-9.
19. Mondal C., Mukhopadhyay A., Sarkar R. (2010), A study on precipitation characteristics induced str- ength variation by nonlinear ultrasonic parameter, Journal of Applied Physics, 108(12): 124910, doi: 10.1063/1.3524526.
20. Ozturk F., Sisman A., Toros S., Kilic S., Picu R.C. (2010), Influence of aging treatment on mechanical properties of 6061 aluminum alloy, Materials & Design, 31(2): 972–975, doi: 10.1016/j.matdes.2009.08.017.
21. Park J., Kim M., Chi B., Jang C. (2013), Corre- lation of metallurgical analysis & higher harmonic ul- trasound response for long term isothermally aged and crept FM steel for USC TPP turbine rotors, NDT & E International, 54: 159–165, doi: 10.1016/j.ndteint.2012.10.008.
22. Rajasekaran S., Udayashankar N.K., Nayak J. (2012), T4 and T6 treatment of 6061 Al-15 Vol.% SiCP composite, ISRN Materials Science, 2012: 1–5, doi: 10.5402/2012/374719.
23. Ren G., Kim J., Jhang K.Y. (2015), Relationship between second- and third-order acoustic nonlinear parameters in relative measurement, Ultrasonics, 56: 539–544, doi: 10.1016/j.ultras.2014.10.009.
24. Siddiqui R.A., Abdullah H.A., Al-Belushi K.R. (2000), Influence of aging parameters on the mechani- cal properties of 6063 aluminium alloy, Journal of Materials Processing Technology, 102(1–3): 234–240, doi: 10.1016/S0924-0136(99)00476-8.
25. Troeger L.P., Starke, Jr E.A. (2000), Microstructural and mechanical characterization of a superplas- tic 6xxx aluminum alloy, Materials Science and Engineering: A, 277(1–2): 102–113, doi: 10.1016/S0921-5093(99)00543-2.
26. Viswanath A., Rao B.P.C., Mahadevan S., Parameswaran P., Jayakumar T., Raj B. (2011), Nondestructive assessment of tensile properties of cold worked AISI type 304 stainless steel using nonlin- ear ultrasonic technique, Journal of Materials Processing Technology, 211(3): 538–544, doi: 10.1016/j.jmatprotec.2010.11.011.
27. Xiang Y., Deng M., Xuan F.Z. (2014), Thermal degradation evaluation of HP40Nb alloy steel after long term service using a nonlinear ultrasonic technique, Journal of Nondestructive Evaluation, 33: 279– 287, doi: 10.1007/s10921-013-0222-8.
28. Yassar R.S., Field D.P., Weiland H. (2011), Transmission electron microscopy and differential scan- ning calorimetry studies on the precipitation sequence in an Al-Mg-Si alloy: AA6022, Journal of Materials Research, 20(10): 2705–2711, doi: 10.1557/JMR.2005.0330.
29. You J., Wu Y.X., Gong H., Ahmad A.S, Lei Y. (2019), Determination of the influence of post – heat treatment on second-phase of Al 2219-T6 alloy using ultrasonic non-linear measurement technique, Insight – Non-Destructive Testing and Condition Monitoring, 61(4): 209–213, doi: 10.1784/insi.2019.61.4.209.
Go to article

Authors and Affiliations

Jun You
1 2 3
Yunxin Wu
1 4 2 3
Hai Gong
1 4 2 3

  1. Research Institute of Light Alloys, Central South University, Changsha, 410083, China
  2. Nonferrous Metal Oriented Advanced Structural Material and Manufacturing Cooperative Innovation Center, Central South University, Changsha, 410083, China
  3. State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Changsha, 410083, China
  4. School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China

This page uses 'cookies'. Learn more