Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Based on comprehensive interrelated mathematical and graphical-analytical models, including 3D cut layers and simulation of contact, strain, force, and thermal processes during gear hobbing friction forces, heat fluxes, and temperature on the teeth of the hob surface are investigated. Various physical phenomena are responsible for their wear: friction on contact surfaces and thermal flow. These factors act independently of each other; therefore, the worn areas are localized in different active parts of the hob. Friction causes abrasive wear and heat fluxes result in heat softening of the tool. Intense heat fluxes due to significant friction, acting on areas of limited area, lead to temperatures exceeding the critical temperature on certain edges of the high-speed cutter. Simulation results enable identification of high-temperature areas on the working surface of cutting edges, where wear is caused by various reasons, and make it possible to select different methods of hardening these surfaces. To create protective coatings with maximum heat resistance, it is advisable to use laser technologies, electro spark alloying, or plasma spraying, and for coatings that provide reduction of friction on the surfaces – formation of diamond-containing layers with minimum adhesion properties and low friction coefficient on the corresponding surfaces.
Go to article

Bibliography

1. K.-D. Bouzakis, S. Kombogiannis, A. Antoniadis, and N. Vidakis. Gear hobbing cutting process simulation, and tool wear prediction models. Journal of Manufacturing Science and Engineering, 124(1):42–51, 2002. doi: 10.1115/1.1430236.
2. V. Dimitriou, N. Vidakis, and A Antoniadis. Advanced computer aided design simulation of gear hobbing by means of three-dimensional kinematics modeling. Journal of Manufacturing Science and Engineering, 129(5):911–918, 2007. doi: 10.1115/1.2738947.
3. S.P. Radzevich, and M. Storchak. Advances in Gear Theory and Gear Cutting Tool Design. Springer, Cham, Switzerland, 2022.
4. I. Hrytsay, V. Stupnytskyy, and V. Topchii. Improved method of gear hobbing computer aided simulation. Archive of Mechanical Engineering, 66(4):475–494, 2019. doi: 10.24425/ame.2019.131358.
5. S. Stein, M. Lechthaler, S. Krassnitzer, K. Albrecht, A. Schindler, and M. Arndt. Gear hobbing: a contribution to analogy testing, and its wear mechanisms. Procedia CIRP, 1:220–225, 2012. doi: 10.1016/j.procir.2012.04.039.
6. X. Yang and P. Chen. Heat transfer enhancement strategies for eco-friendly dry hobbing considering the heat exchange capacity of chips. Case Studies in Thermal Engineering, 29, 101716, 2022. doi: 10.1016/j.csite.2021.101716.
7. H. Cao, L. Zhu, X. Li, P. Chen, and Y. Chen. Thermal error compensation of dry hobbing machine tool considering workpiece thermal deformation. International Journal of Advanced Manufacturing Technology, 86:1739–1751, 2016. doi: 10.1007/s00170-015-8314-5.
8. T. Tezel, E.S. Topal, and V. Kovan. Characterising the wear behaviour of DMLS-manufactured gears under certain operating conditions. Wear, 440–441:203106, 2019. doi: 10.1016/j.wear.2019.203106.
9. S. Stark, M. Beutner, F. Lorenz, S. Uhlmann, B. Karpuschewski, and T. Halle. Heat flux, and temperature distribution in gear hobbing operations. Procedia CIRP, 8:456–461, 2013. doi: 10.1016/j.procir.2013.06.133.
10. N. Tapoglou, T. Belis, D. Vakondios, and A. Antoniadis. CAD-based simulation of gear hobbing. 31 International Symposium on Mechanics, and Materials, May 9–14, Greece, 2010.
11. K.D. Bouzakis, K. Chatzis, S. Kombogiannis, and O. Friderikos. Effect of chip geometry, and cutting kinematics on the wear of coated PM HSS tools in milling. Proceedings of the 7th International Conference Coatings in Manufacturing Engineering, pages 197–208, 1–3 October, Chalkidiki, Greece. 2008.
12. K.-D. Bouzakis, E. Lili, N. Michailidis, and O. Friderikos. Manufacturing of cylindrical gears by generating cutting processes: A critical synthesis of analysis methods. CIRP Annals, 57(2):676–696, 2008. doi: 10.1016/j.cirp.2008.09.001.
13. B. Karpuschewski, H.J. Knoche, M. Hipke, and M. Beutner. High performance gear hobbing with powder-metallurgical high-speed-steel. Procedia CIRP, 1:196–201, 2012. doi: 10.1016/j.procir.2012.04.034.
14. B. Karpuschewski, M. Beutner, M. Köchig, and C. Härtling. Influence of the tool profile on the wear behaviour in gear hobbing. CIRP Journal of Manufacturing Science and Technology, 18:128–134, 2018. doi: 10.1016/j.cirpj.2016.11.002.
15. F. Klocke, C. Gorgels, R. Schalaster, and A. Stuckenberg. An innovative way of designing gear hobbing processes. Gear Technology, 1:48–53, 2012.
16. C. Claudin, and J. Rech. Effects of the edge preparation on the tool life in gear hobbing. In Proceedings of the 3rd International Conference on Manufacturing Engineering (ICMEN), pages 57–70, Chalkidiki, Greece, 1–3 October 2008.
17. J. Rech. Influence of cutting edge preparation on the wear resistance in high speed dry gear hobbing. Wear, 261(5-6):505–512, 2006. doi: 10.1016/j.wear.2005.12.007.
18. C. Claudin, and J. Rech. Development of a new rapid characterization method of hob’s wear resistance in gear manufacturing – Application to the evaluation of various cutting edge preparations in high speed dry gear hobbing. Journal of Materials Processing Technology, 209(11):5152–5160, 2009. doi: 10.1016/j.jmatprotec.2009.02.014.
19. B. Hoffmeister. About Wear on the Hob. D.Sc. Thesis, RWTH Aachen, Germany, 1970 (in German).
20. I. Hrytsay, and V. Stupnytskyy. Prediction the durability of hobs based on contact, and friction analysis on the faces for cutting teeth, and edges during hobbing. In: V. Ivanov, J. Trojanowska, I. Pavlenko, J. Zajac, D. Peraković (eds): Advances in Design, Simulation and Manufacturing IV. Lecture Notes in Mechanical Engineering. Springer, 1:405–414, 2021. doi: 10.1007/978-3-030-77719-7_40.
21. F. Klocke. Manufacturing Processes, Cutting. Springer, RWTH edition, 2011.
22. M.P. Mazur, V.M. Vnukov, V.L. Dobroskok, V.O. Zaloga, J.K. Novosiolov, and F.J. Yakubov. Fundamentals of the Theory of Cutting Materials. Novyy Svit, 2011 (in Ukrainian).
23. I. Hrytsay, V. Stupnytskyy, and V. Topchii. Simulation of loading, and wear rate distribution on cutting edges during gears hobbing. Archive of Mechanical Engineering, 68(1):52–76, 2021. doi: 10.24425/ame.2021.137041.
24. A.B. Aleksandrovich, B.D. Danilenko, Y.V. Loshchinin, T.A. Kolyadina, and I.M. Khatsinskaya. Thermophysical properties of low-alloy high-speed steels. Metal Science and Heat Treatment, 30:502–504, 1988. doi: 10.1007/BF00777438.
25. N.G. Abuladze. Character, and the length of tool–chip contact. In Proceedings of the Machinability of Heat-Resistant and Titanium Alloys, pages 68–78, Kuibyshev, S.U., 1962. (in Russian)..
Go to article

Authors and Affiliations

Ihor Hrytsay
1
ORCID: ORCID
Vadym Stupnytskyy
1
ORCID: ORCID

  1. Lviv Polytechnic National University, Lviv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of a simulation on a 3D model of undeformed chips and cutting forces during three-pass gear cutting using the power skiving method. At the level of individual blades and teeth in successive angular cutting positions, the main component of the cutting force and the tangential force on the cutter axis are shown. The analysis of the forces acting on a single gear tooth and the continuous cutting forces allowed the development of a methodology for the selection of rational cutting modes – the value of the axial feed, the number of passes with different cutting depths in order to ensure the minimum time consumption and to achieve the required accuracy of the gears in terms of the parameter of the permissible angular deviation of the profile of the cut gear. It is shown that, provided the required machining accuracy is ensured, higher productivity is achieved by increasing the axial feed at a lower depth of cut and increasing the number of passes, rather than by reducing the feed and increasing the depth of cut.
Go to article

Authors and Affiliations

Ihor Hrytsay
1
ORCID: ORCID
Andrii Slipchuk
1
ORCID: ORCID

  1. Lviv Polytechnic National University, Lviv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Results of complex mathematical and computer simulation of gear hobbing are given. A systematic approach to research allowed for the development of simulation models and sequencing of all aspects of this complex process. Based on the modeling of non-deformable chips, a new analytical method for analyzing hobbing has been proposed. The shear, friction and cutting forces at the level of certain teeth and edges in the active space of the cutter are analyzed depending on the cut thickness, cross-sectional area, intensity of plastic deformation and length of contact with the workpiece has been developed. The results of computer simulations made it possible to evaluate the load distribution along the cutting edge and to predict the wear resistance and durability of the hob cutter, as well as to develop measures and recommendations for both the tool design and the technology of hobbing in general. Changing the shape of cutting surface, or the design of the tooth, can facilitate separation of the cutting process between the head and leading and trailing edges. In this way, more efficient hobbing conditions can be achieved and the life of the hob can be extended.
Go to article

Bibliography

[1] B. Karpuschewski, H.J. Knoche, M. Hipke, and M. Beutner. High performance gear hobbing with powder-metallurgical high-speed-steel. In Procedia CIRP, 1:196–201, 2012. doi: 10.1016/j.procir.2012.04.034.
[2] B. Karpuschewski, M. Beutner, M. Köchig, and C. Härtling. Influence of the tool profile on the wear behaviour in gear hobbing. CIRP Journal of Manufacturing Science and Technology, 18:128–134, 2018. doi: 10.1016/j.cirpj.2016.11.002.
[3] K.-D. Bouzakis, O. Friderikos, I. Mirisidis, and I. Tsiafis. Geometry and cutting forces in gear hobbing by a FEM-based simulation of the cutting process. In Proceedings of the 8th CIRP International Workshop on Modeling of Machining Operations, 10-11 May, Chemnitz, 2005.
[4] F. Klocke, C. Gorgels, R. Schalaster, and A. Stuckenberg. An innovative way of designing gear hobbing processes. Gear Technology, May:48–53, 2012.
[5] K.D. Bouzakis, S. Kombogiannis, A. Antoniadis, and N. Vidakis. Gear hobbing cutting process simulation and tool wear prediction models. Journal of Manufacturing Science and Engineering, 124(1):42–51, 2002. doi: 10.1115/1.1430236.
[6] K.D. Bouzakis, E. Lili E, N. Michailidis, and O. Friderikos. Manufacturing cylindrical gears by generating cutting processes: a critical synthesis of analysis methods. CIRP Annals, 57(2):676–696, 2008. doi: 10.1016/j.cirp.2008.09.001.
[7] G. Skordaris, K.D. Bouzakis, T. Kotsanis, P. Charalampous, E. Bouzakis, O. Lemmer, and S. Bolz. Film thickness effect on mechanical properties and milling performance of nano-structured multilayer PVD coated tools. Surface and Coatings Technology, 307, Part A:452–460, 2016, doi: 10.1016/j.surfcoat.2016.09.026.
[8] K.D. Bouzakis, S. Kombogiannis, A. Antoniadis, and N. Vidakis. Modeling of gear hobbing. Cutting simulation, tool wear prediction models and computer supported experimental-analytical determination of the hob life-time. In Proceeding of ASME International Mechanical Engineering Congress and Exposition, volume 1, pages 261–269, Shannon, 14–19 November, 1999.
[9] N. Sabkhi, A. Moufki, M. Nouari, C. Pelaingre, and C. Barlier. Prediction of the hobbing cutting forces from a thermomechanical modeling of orthogonal cutting operation. Journal of Manufacturing Processes, 23:1–12, 2016. doi: 10.1016/j.jmapro.2016.05.002.
[10] V. Dimitriou and A. Antoniadis. CAD-based simulation of the hobbing process for the manufacturing of spur and helical gears. The International Journal of Advanced Manufacturing Technology, 41(3-4):347–357, 2009. doi: 10.1007/s00170-008-1465-x.
[11] C. Claudin and J. Rech. Effects of the edge preparation on the tool life in gear hobbing. In Proceedings of the 3rd International Conference on Manufacturing Engineering (ICMEN), pages 57-70, Chalkidiki, Greece, 1-3 October 2008.
[12] J. Rech. Influence of cutting edge preparation on the wear resistance in high speed dry gear hobbing. Wear, 261(5-6):505–512, 2006. doi: 10.1016/j.wear.2005.12.007.
[13] C. Claudin and J. Rech. Development of a new rapid characterization method of hob’s wear resistance in gear manufacturing – Application to the evaluation of various cutting edge preparations in high speed dry gear hobbing. Journal of Materials Processing Technology, 209(11):5152–5160, 2009. doi: 10.1016/j.jmatprotec.2009.02.014.
[14] B. Hoffmeister. Über den Verschleiß am Wälzfräser (About wear on the hob). D.Sc. Thesis, RWTH Aachen, Germany, 1970 (in German).
[15] V.P. Astakhov. Metal Cutting Mechanics. CRC Press, 1999.
[16] P. Gutmann. Zerspankraftberechnung beim Waelzfraesen (Calculation of the cutting force for hobbing). Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 1988 (in German).
[17] I. Hrytsay, V.Stupnytskyy, and V. Topchii. Improved method of gear hobbing computer aided simulation. Archive of Mechanical Engineering, 66(4):475–494, 2019. doi: 10.24425/ame.2019.131358.
[18] V. Stupnytskyy and I. Hrytsay. Computer-aided conception for planning and researching of the functional-oriented manufacturing process. In: Tonkonogyi V. et al. (eds) Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, pages 309–320, 2020. doi: 10.1007/978-3-030-40724-7_32.
[19] I. Hrytsay and V. Stupnytskyy. Advanced computerized simulation and analysis of dynamic processes during the gear hobbing. In: Tonkonogyi V. et al. (eds) Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, pages 85–97, 2019. doi: 10.1007/978-3-030-40724-7_9.
[20] S.S. Silin. Similarity Methods in Metal Cutting, Mashinostroenie, Moscow, 1979. (in Russian).
[21] S.P. Radzevich. Gear Cutting Tools. Science and Engineering. CRC Press, 2017.
Go to article

Authors and Affiliations

Ihor Hrytsay
1
ORCID: ORCID
Vadym Stupnytskyy
1
ORCID: ORCID
Vladyslav Topchi
1
ORCID: ORCID

  1. Lviv Polytechnic National University, Lviv, Ukraine

This page uses 'cookies'. Learn more