Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A pontoon bridge, also known as a floating bridge, can be used as for pedestrian and vehicle traffic. The buoyancy of the floating bridge limits the maximum load it can carry. This research included experimental runs to study variations of open channel flow characteristics upstream and downstream a floating bridge. Eighty one runs have been carried out using a flume in a hydraulic laboratory. The experimental run program is classified into two main categories; the first investigates the velocity ratios (vds/vus) downstream and upstream the floating bridge. The second category is concerned with the energy head losses (hL) due to the presence of a floating bridge. The experimental runs are carried out using three pontoon lengths, three flow depths, six submerged depths, and three discharges. The results are analysed and graphically presented to help predict hydraulic parameters. The outcomes have shown that the floating bridge upstream, Froude number and submergence of the pontoon are the dominant parameters that affect the studied flow characteristics.
Go to article

Authors and Affiliations

Mohamed M. Ibrahim
1
ORCID: ORCID
Mahmoud A.R. Eltoukhy
1
ORCID: ORCID
Adnan D. Ghanim
2
ORCID: ORCID

  1. Benha University, Shoubra Faculty of Engineering, PO Box 11629, Shoubra, Egypt
  2. Advisor to the President of the Iraqi Council of Representatives, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Because of hydraulic jump, the scour downstream a stepped spillway is the most confusing issue that endangers the overall stability of the spillway. In this paper, thirty-six exploratory runs are described to explore the impact of utilizing submerged water jets fixed in the stilling basin of a stepped spillway on the downstream scour measurements under various flow conditions. A smooth apron where the water jets are disabled is incorporated to characterize the impact of adjustments studied. Trials are performed utilizing different upstream discharges, jets arrangements, and tailwater depths. The results are analyzed and graphically presented. The experimental data are contrasted to a scour formulae developed by other specialists. Outcomes indicated that by utilizing submerged floor water jets, the maximum scour depth is decreased between 14.3 and 36.0%. Additionally, the maximum scour length is reduced by 9.7 to 42.3%. Finally, involving regression analysis, simple formulas are developed to estimate different scour parameters.
Go to article

Authors and Affiliations

Mohamed M. Ibrahim
1
ORCID: ORCID
Al Sayed Ibrahim Diwedar
2
ORCID: ORCID
Ahmed Mahmoud Ibraheem
2
ORCID: ORCID

  1. Benha University, Shoubra Faculty of Engineering, PO box 11629 Shoubra, Egypt
  2. National Water Research Center, Hydraulics Research Institute, P.O.Box 74, Shoubra El-Kheima 13411, Egypt

This page uses 'cookies'. Learn more