Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the study results of electropulse grinding of amber in aqueous and alcoholic media at different amounts of supplied energy. Description of the electropulse grinding laboratory installation, the mechanism of the destruction process of amber particles and methods of statistical processing of experimental data are given. It was established that alcohol medium has a greater impact on the efficiency of crushing than water. Thus, under the same conditions of energy supply, in the aqueous medium the weighted average particle size of amber was 601:6±688:9 μm, and in an alcohol medium – 368:0±269:6 μm. In an aqueous medium, the particle size decreased to 1/13.6 of raw sample, and in an alcoholic medium to 1/22.3 of raw sample compared to the initial size of raw amber. We found that in the aqueous medium the ratio of large to small fractions is mainly the same with the coefficient of alignment of particles with a size of 1.09. In an alcoholic medium, this ratio significantly differs, with the coefficient of alignment of amber particles of a size of 1.67 with the amount of supplied energy of 125 kJ.
Go to article

Bibliography

[1] Y.M. Wang, M.X. Yang, and T. You. Latest progress of pressed amber. Journal of Gems & Gemmology, 14(1):38–45, 2012.
[2] N.V. Martynov, V.N. Dobromirov, and D.V. Avramov. Electro-hydraulic disintegration technology for diamond-bearing rocks. Ore Dressing, 2020(1):8–14. 2020. doi: 10.17580/or.2020.01.02 (in Russian).
[3] U. Andres. Development and prospects of mineral liberation by electrical pulses. International Journal of Mineral Processing, 97(1-4):31–38. 2010. doi: 10.1016/j.minpro.2010.07.004.
[4] D. Yan, D. Bian, J. Zhao, and S. Niu. Study of the electrical characteristics, shock-wave pressure characteristics, and attenuation law based on pulse discharge in water. Shock and Vibration, 2016:6412309, 2016. doi: 10.1155/2016/6412309.
[5] T. Krytska and T. Lytvynenko. Electropulse crushing of high-purity crystalline silicon in an aqueous medium. Metallurgy, 1(35):54–57, 2016. (in Ukrainian).
[6] N. Martynov, D.Avramov, G.Kozlov, and M. Pushkarev. Pulsed electric discharge in an aqueous medium for processing raw amber. Journal of Physics: Conference Series, 1614(1):012060, 2020. doi: 10.1088/1742-6596/1614/1/012060.
[7] X. Zhang, B. Lin, C. Zhu, Y. Wang, C. Guo, and J. Kong. Improvement of the electrical disintegration of coal sample with different concentrations of NaCl solution. Fuel, 222:695–704, 2018. doi: 10.1016/j.fuel.2018.02.151.
[8] A.P. Smirnov, V.G. Zhekul, E.I. Taftai, O.V. Khvoshchan, and I. S. Shvets. Effect of parameters of liquids on amplitudes of pressure waves generated by electric discharge. Surface Engineering and Applied Electrochemistry, 55(1):84–88, 2019. doi: 10.3103/S1068375519010149.
[9] V. Chornyi, T. Mysiura, N. Popova, and V. Zavialov. Solvent selection for extraction of target components from amber. Journal of Chemistry and Technologies, 29(1):92–99, 2020, doi: 10.15421/082106. (in Ukrainian).
[10] P.A. Kouzov. Fundamentals of disperse composition analysis of industrial dusts and ground materials. Chemistry, 1987. (in Russian).
[11] A.R. Demidov and S.E. Chirikov. Grinding methods and methods for evaluating their effectiveness. Report of Central Institute of Scientific and Technical Information and Technical and Economic Research of the Committee of Procurements of the USSR, Moscow, 1969. (in Russian).
[12] G.A. Egorov, V.T. Linnichenko, E.M. Melnikov, and T. P. Petrenko. Workshop on technology of flour, cereals and compound feed. Agropromizdat, Moscow, 1991. (in Russian).
[13] B.P. Demidovich and I.A. Maron. Fundamentals of Computational Mathematics. Science, Moscow, 1970. (in Russian).
[14] H. M. Bartenev. The statistical nature of strength and discrete levels of strength and durability of polymers. In: Strength and degradation mechanism of polymers, pages 243–261. Chemisty, 1984. (in Russian).
[15] W. Zuo, X. Li, F. Shi, R. Deng,W. Yin, B. Guo, and J. Ku. Effect of high voltage pulse treatment on the surface chemistry and floatability of chalcopyrite and pyrite. Minerals Engineering, 147:106170, 2020. doi: 10.1016/j.mineng.2019.106170.
Go to article

Authors and Affiliations

Valentyn Chornyi
1
ORCID: ORCID
Yevgen Kharchenko
1
ORCID: ORCID
Taras Mysiura
1
ORCID: ORCID
Nataliia Popova
1
ORCID: ORCID
Volodymyr Zavialov
1
ORCID: ORCID

  1. Institute of Food Technologies, National University of Food Technologies, Kyiv, Ukraine.

This page uses 'cookies'. Learn more