Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, stainless steel 316L and Inconel 625 alloy powders were additively manufactured by using directed energy deposition process. And heat treatment effect on hardness and microstructures of the bonded stainless steel 316L/Inconel 625 sample was investigated. The microstructures shows there are no secondary phases and big inclusions near interfacial region between stainless steel 316L and Inconel 625 except several small cracks. The results of TEM and Vickers Hardness show the interfacial area have a few tens of micrometers in thickness. Interestingly, as the heat treatment temperature increases, the cracks in the stainless steel region does not change in morphology while both hardness values of stainless steel 316L and Inconel 625 decrease. These results can be used for designing pipes and valves with surface treatment of Inconel material based on stainless steel 316L material using the directed energy deposition.
Go to article

Bibliography

[1] G .H. Shin, J.P. Choi, K.T. Kim, B.K. Kimm, J.H. Yu, J. Korean Powder Metall. Inst. 24, 210 (2017).
[2] A. Ambrosi, M. Pumera, Chem. Soc. Rev. 45, 2740 (2016).
[3] G .S. Lee, Y.S. Eom, K.T. Kim, B.K. Kim, J. H. Yu, J. Korean Powder Metall. Inst. 26, 138 (2019).
[4] Y.S. Eom, D.W. Kim, K.T. Kim, S.S. Yang, J. Choe, I. Son, J.H. Yu, J. Korean Powder Metall. Inst. 27, 103 (2020).
[5] J. Hwang, S. Shin, J. Lee, S. Kim, H. Kim, Journal of Welding and Joining 35, 28 (2017).
[6] I . Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies, Springer New York, 245 (2015).
[7] A. Saboori, D. Gallo, S. Biamino, P. Fino, M. Lombardi, Appl. Sci. 7, 883 (2017).
[8] J.S. Park, M.-G. Lee, Y.-J. Cho, J. H. Sung, M.-S. Jeong, S.-K. Lee, Y.-J. Choi, D.H. Kim, Met. Mater. Int. 22, 143 (2016).
[9] R . Koike, I. Unotoro, Y. Kakinuma, Y. Oda, Int. J. Autom. Techno. 13, 3 (2019).
[10] D.R. Feenstra, A. Molotnikov, N. Birbilis, J. Mater. Sci. 55, 13314- 13328 (2020).
[11] B.E. Carroll, R.A. Otis, J.P. Borgonia, J. Suh, R.P. Dillon, A.A. Shapiro, D.C. Hofmann, Z.-K. Liu, A. M. Beese, Acta Mater. 108, 46 (2016).
[12] T. Abe, H. Sasahara, Precis. Eng. 45, 387 (2016).
[13] G.H. Aydoğdu, M.K. Aydinol, Corros. Sci. 48, 3565 (2006).
[14] H.Y. Al-Fadhli, J. Stokes, M.S.J. Hashmi, B.S. Yilbas, Surf. Coat. Technol. 200, 20 (2006).
[15] Y.S. Eom, K.T. Kim, S. Jung, J.H. Yu, D.Y. Yang, J. Choe, C.Y. Sim, S.J. An, J. Korean Powder Metall. Inst. 27, 219 (2020).
Go to article

Authors and Affiliations

Yeong Seong Eom
1 2
Kyung Tae Kim
1
Dong Won Kim
1
Ji Hun Yu
1
Chul Yong Sim
3
Seung Jun An
3
Yong-Ha Park
4
Injoon Son
2
ORCID: ORCID

  1. Korea Institute of Materials Science, 797 Changwon-daero, Changwon, Republic of Korea
  2. Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
  3. Insstek, Daejeon, Republic of Korea
  4. Samsung Heavy Industries, Geoje-si, Republic of Korea

This page uses 'cookies'. Learn more