Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Directed energy deposition (DED) is an additive manufacturing process wherein an energy source is focused on a substrate on which a feedstock material is simultaneously delivered, thereby forming a small melt pool. Melting, solidification, and subsequent cooling occur at high rates with considerable thermal gradients compared with traditional metallurgical processes. Hence, it is important to examine the effects of cooling rates on the microstructures and properties of the additive manufactured materials. In this study, after performing DED with various energy densities, we investigated the changes in the microstructures and Vickers hardness of cast Al-33 wt.% Cu alloy, which is widely used to estimate the cooling rate during processing by measuring the lamellar spacing of the microstructure after solidification. The effects of the energy density on the cooling rate and resultant mechanical properties are discussed, which suggests a simple way to estimate the cooling rate indirectly. This study corresponds to the basic stage of the current study, and will continue to apply DED in the future.
Go to article

Authors and Affiliations

Yeon-Joo Lee
1 2
ORCID: ORCID
Do-Hun Kwon
1
ORCID: ORCID
Eun-Ji Cha
1
ORCID: ORCID
Yong-Wook Song
2
ORCID: ORCID
Hyun-Joo Choi
2
ORCID: ORCID
Hwi-Jun Kim
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Research Institute of Advanced Manufacturing & Materials Technology, 156, Gaetbeol-ro, Yeonsu-gu, Incheon, Republic of Korea 21999
  2. Kookmin University Dept. of Advanced Materials Engineering, Seoul, KS013, Republic of Korea

This page uses 'cookies'. Learn more