Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An alternative fabrication method for metallic fuel in Gen-IV reactor was introduced with vibration packing of nuclear fuel particles to facilitate remote fabrication in a hot cell and reduce the generation of long-lived radioactive wastes. Vibration packing experiments on metallic particulate fuel using a surrogate 316L stainless steel powder were done to investigate the packing density and the uniformity of the simulated fuel according to the filling method and the vibration condition. Metallic particulate fuel filled with a pre-mixed power over all particles had the highest packing fraction and the most uniform distribution among the filling methods. The vibration packing method showed that it could fabricate the metallic particulate fuel having uniform distribution of spherical fuel particles through the adjustment of the filling method of the metallic powder and the vibration condition of the metallic particulate fuel.
Go to article

Bibliography

[1] T. Abram, S. Ion, Energy Policy 36, 4323-4330 (2008).
[2] G eneration IV International Forum, A Technology Roadmap for Generation IV Nuclear Energy Systems, 2002.
[3] H.S. Lee, G.I. Park, I.J. Cho, Sci. Technol. Nucl. Install. 2013, 1-11 (2013).
[4] H. Lee, G.I. Park, E.H. Kim, Nucl. Eng. Technol. 43, (317-328) 2011.
[5] J.I. Jang, Nucl. Eng. Technol. 43, 161-170 (2007).
[6] J.H. Jang, H.S. Kang, Y.S. Lee, H.S. Lee, J.D. Kim, J. Radioanal. Nucl. Chem. 295, 1743-1751 (2013).
[7] C.E. Stevenson, The EBR-II Fuel Cycle Story, American Nuclear Society, La Grange Park, Ill, USA, 1987.
[8] H. Lee, G.I. Park, I.J. Cho, Sci. & Technol. Nucl. Install. 2013, 1-11 (2013).
[9] J.H. Kim, H. Song, H.T. Kim, K.H. Kim, C.B. Lee, R.S. Fielding, J. Radioanal. Nucl. Chem. 299, 103-109 (2014).
[10] M .A. Pouchon, G. Ledergerber, F. Ingold, K. Bakker, J. Nucl. Mater. 3, 275-312 (2012).
[11] G . Ledergerber, F. Ingold, R.W. Stratton et al., Nucl. Tech. 114, 194-203 (1996).
[12] G . Bart, F.B. Botta, C.W. Hoth, G. Ledergerber, R.E. Mason, R.W. Stratton, J. Nucl. Mater. 376, 47-59 (2008).
[13] K.H. Kim, D.B. Lee, C.K. Kim, I.H. Kuk, K.W. Paik, J. Nucl. Sci. & Tech. 34, 1127-1132 (1997).
[14] J.H. Kim, J.W. Lee, K.H. Kim, C.B. Lee, Sci. and Tech. Nucl. Istall. 2016, 1-7 (2016).
[15] K.H. Kim, S.J. Oh, S.K. Kim, C.T. Lee, C.B. Lee, Surf. Interface Anal. 44, 1515-1518 (2012).
[16] R . Herbig, K. Rudoph, B. Lindau, J. Nucl. Mater. 204, 93-101 (1993).
[17] K.L. Peddicord, R.W. Stratton, J.K. Thomas, Prog. Nucl. Energy 18, 265-299 (1986).
[18] G . Ledergerber, F. Ingold, R.W. Stratton, H.P. Alder, Nucl. Technol. 114, 194-204 (1996).
[19] A.S. Icenhour, D.F. Williams, Sphere-Pac Evaluation for Transmutation, ORNL/TM-2005/41, 2005.
[20] G .D. Del Cul, C.H. Mattus, A.S. Icenhour, L.K. Felker, Fuel Fabrication Development for the Surrogate Sphere-Pac Rodlet, ORNL/TM-2005/108, 2005.
[21] A.L. Lotts et al., Fast Breeder Reactor Oxide Fuels Development, ORNL-4901, 1973.
[22] Ch. Hellwig, K. Bakker, M. Nakamura, F. Ingold, L.A. Nordstro, Y. Kihara, Nucl. Sci. Eng. 153, 233-244 (2006).
[23] H.A.C.K. Hettiarachchi, W.K. Mampearachchi, Powder Technology 336, 150-160 (2018).
[24] J.G. Jeon et al., Korean J. Met. Mater. 54, 322-331 (2016).
Go to article

Authors and Affiliations

Ki-Hwan Kim
1
ORCID: ORCID
Seong-Jun Ha
1
Sang-Gyu Park
1
Seoung-Woo Kuk
1
Jeong-Yong Park
1

  1. Korea Atomic Energy Research Institute, Next-Generation Fuel Technology Development Division, 989-111, Daedeok-daero, Yuseong-gu, Daejeon, 34057, Republic of Korea

This page uses 'cookies'. Learn more