Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article analyzes and evaluates the development of renewable energy from the standpoint of state regulation and incentives. It is noted that the global production of renewable electricity has increased by 15% over the last year. The periods of introduction of the “green tariff” as an economic stimulus for the development of solar energy, which became the starting point for the development of alternative generation in different countries, are analyzed. The role of institutional factors in the development of renewable energy, such as the free issuance of licenses for electricity generation, stimulating the creation of specialized research areas, technology development and production of relevant equipment, was observed. The necessity of taking into account the regional peculiarity in the state stimulation of the development of renewable energy is proved. The economic efficiency of the state regulation of alternative energy in time measurement per conditional unit of alternative renewable energy stations was calculated, taking the coefficient of proportionality into account. Therefore, the calculation indicates the high effectiveness of government policy in regulating energy in terms of only short-term lag (α = 1.3) and the number of stations 80 percent of full saturation relative to the basic needs of energy consumption. A separate further stage in the development of renewable energy without the introduction and expansion of the “green tariff” has been identified. This approach was introduced in Poland, which ensured the country not only the inflow of foreign investment, but also the formation of free competition among investors.
Go to article

Bibliography

Barbose, G.L. 2021. US Renewables Portfolio Standards 2021 Status Update: Early Release. Berkeley, United States: Lawrence Berkeley National Laboratory (LBNL).
Bazaluk et al. 2021a – Bazaluk, O., Havrysh, V. and Nitsenko, V. 2021a. Energy and environmental assessment of straw production for power generation. E3S Web of Conferences 228, DOI: 10.1051/e3sconf/202122801010.
Bazaluk et al. 2021b – Bazaluk, O., Havrysh, V., Fedorchuk, M. and Nitsenko, V. 2021b. Energy Assessment of Sorghum Cultivation in Southern Ukraine. Agriculture 11(8), DOI: 10.3390/agriculture11080695.
BMWi 2010. Bundesministerium für Wirtschaft und Technologie (BMWi) 2010. Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. Berlin: Bundesministerium für Wirtschaft und Technologie.
Cader et al. 2021 – Cader, J., Olczak, P. and Koneczna, R. 2021. Regional dependencies of interest in the “My Electricity” photovoltaic subsidy program in Poland. Polityka Energetyczna – Energy Policy Journal 24(2), pp. 97–116, DOI: 10.33223/epj/133473.
Climate Change Act 2008. [Online] https://www.legislation.gov.uk/ukpga/2008/27/contents [Accessed: 2021-09-05].
Climate Change Laws of the World 2016. 13th Five-Year Plan. [Online] https://www.climate-laws.org/geographies/china/policies/13th-five-year-plan [Accessed: 2021-09-05].
Edie Newsroom 1999. GERMANY: Shell opens solar cell factory in Europe’s ‘Solar Valley’. [Online] https://www.edie.net/news/0/GERMANY-Shell-opens-solar-cell-factory-in-Europes-Solar-Valley/1977 [Accessed: 2021-09-05].
EISA 2007. Energy Independence and Security Act of 2007. [Online] https://www.govinfo.gov/content/ pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf [Accessed: 2021-09-05].
Energy Act 2004. UK Public General Acts. [Online] https://www.legislation.gov.uk/ukpga/2004/20/contents [Accessed: 2021-09-05].
Energy Act 2008. UK Public General Acts. [Online] https://www.legislation.gov.uk/ukpga/2008/32/contents [Accessed: 2021-09-05].
Energy Act 2010. [Online] https://www.legislation.gov.uk/ukpga/2010/27/pdfs/ukpga_20100027_en.pdf [Accessed: 2021-09-05].
Energy Act 2013. [Online] https://www.legislation.gov.uk/ukpga/2013/32/pdfs/ukpga_20130032_en.pdf [Accessed: 2021-09-05].
Energy Act 2016. UK Public General Acts. [Online] https://www.legislation.gov.uk/ukpga/2016/20/contents/enacted [Accessed: 2021-09-05].
EPAct 2005. Energy Policy Act of 2005, Public Law 109-58. [Online] https://www.congress.gov/109/ plaws/publ58/PLAW-109publ58.pdf [Accessed: 2021-09-05].
Erneuerbare-Energien-Gesetz 2000. [Online] https://www.clearingstelle-eeg-kwkg.de/eeg2000 [Accessed: 2021-09-05].
Erneuerbare-Energien-Gesetz 2004. [Online] https://www.clearingstelle-eeg-kwkg.de/eeg2004 [Accessed: 2021-09-05].
Erneuerbare-Energien-Gesetz 2009. [Online] https://www.clearingstelle-eeg-kwkg.de/eeg2009 [Accessed: 2021-09-05].
Erneuerbare-Energien-Gesetz 2014. Retrieved from https://www.clearingstelle-eeg-kwkg.de/eeg2014 [Accessed: 2021-09-05].
Gestore Rete Trasmissione Nazionale 2002. Provisional Data on Operation of the Italian Power System. [Online] http://collaudo.download.terna.it/terna/0000/0124/06.PDF [Accessed: 2021-09-05].
GSE 2014. Incentivazionedellaproduzione di energiaelettrica da impianti a fontirinnovabilidiversidai fotovoltaici. [Online] https://www.gse.it [Accessed: 2021-09-05].
GSE 2021. Energy consumption. [Online] https://www.gse.it/ [Accessed: 2021-09-05].
IRENA 2015. Renewable Energy Prospects: United States of America. [Online] https://www.irena.org/publications/2015/Jan/Renewable-Energy-Prospects-United-States-of-America [Accessed: 2021-09-05].
IRENA 2020. Country Rankings. [Online] https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Country-Rankings [Accessed: 2021-09-05].
Kholiavko et al. 2020 – Kholiavko, N., Popova, L., Marych, M., Hanzhurenko, I., Koliadenko, S. and Nitsenko, V. 2020. Comprehensive methodological approach to estimating the research component influence on the information economy development. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 4(178), pp. 192–199, DOI: 10.33271/nvngu/2020-4/192.
Kohler, T. 2021. Renewable Energies marketing models Poland. [Online] https://www.roedl.com/renewable-energy-consulting/markets/countries/marketing-models-poland [Accessed: 2021-09-05].
Koval et al. 2021 – Koval, V., Hrymalyuk, A., Kulish, A., Kontseva, V., Boiko, N. and Nesenenko, P. 2021. Economic policy of industrial development and investment approach to the analysis of the national economy. Estudios De Economia Aplicada 39(6), DOI: 10.25115/eea.v39i6.5263.
Koval et al. 2019 – Koval, V., Sribna, Y. and Gaska, K. 2019. Energy cooperation Ukraine-Poland to strengthen energy security. E3S Web Conference 132, 01009, DOI: 10.1051/e3sconf/201913201009.
Labunska et al. 2017 – Labunska, Sv., Petrova, M. and Prokopishyna, O. 2017. Asset and cost management for innovation activity. Economic Annals – XXI 165(5–6), pp. 13–18, DOI: 10.21003/ea.V165-03.
Ministry of Economic Development of Italy 2018. Proposta di piano nazionaleintegrato per l’energia e il clima. [Online] https://www.mise.gov.it/images/stories/documenti/Proposta_di_Piano_Nazionale_Integrato_ per_Energia_e_il_Clima_Italiano.pdf [Accessed: 2021-09-05] (in Italian).
MOFCOM 2013. Renewable Energy Law of the People’s Republic of China. [Online] http://english.mofcom.gov.cn/article/policyrelease/Businessregulations/201312/20131200432160.shtml [Accessed: 2021-09-05].
National Development and Reform Comission 2019. [Online] https://web.archive.org/web/20190511191431/http://www.ndrc.gov.cn/gzdt/201509/t20150921_751695.html [Accessed: 2021-09-05].
National Energy Administration 2021. [Online] http://english.www.gov.cn/state_council/2014/10/01/content_ 281474991089761.htm [Accessed: 2021-09-05].
Olczak at al. 2020 – Olczak, P., Matuszewska, D. and Kryzia, D. 2020. “Mój Prąd” as an example of the photovoltaic one off grant program in Poland. Polityka Energetyczna – Energy Policy Journal 23(2), pp. 123–138, DOI: 10.33223/epj/122482.
Olczak at al. 2021a – Olczak, P., Kryzia, D., Matuszewska, D. and Kuta, M. 2021a. “My Electricity” Program Effectiveness Supporting the Development of PV Installation in Poland. Energies 14(1), 231, DOI: 10.3390/en14010231.
Olczak et al. 2021b – Olczak, P., Przemysław, J., Kryzia, D., Matuszewska, D., Fyk, M. and Dyczko, A. 2021b. Analyses of duck curve phenomena potential in polish PV prosumer households’ installations. Energy Reports 7, November 2021, pp. 4609–4622, DOI: 10.1016/j.egyr.2021.07.038.
Piper et al. 2019 – Piper, S., Cotting, A., Wilson, A., O’Reilly, J., Hlinka, M., Lehmann, J. and Hering, G. 2019. The 2020 US renewable energy outlook. [Online] https://www.spglobal.com/marketintelligence/en/news-insights/research/the-2020-us-renewable-energy-outlook [Accessed: 2021-09-05].
Pukala, R. and Petrova, M. 2019. Application of the AHP method to select an optimal source of financing innovation in the mining sector. E3S Web of Conferences 105, DOI: 10.1051/e3sconf/201910504034.
REN21 2018. A comprehensive annual overview of the state of renewable energy. [Online] https://www.ren21.net/wp-content/uploads/2019/08/Full-Report-2018.pdf [Accessed: 2021-09-05].
Shmygol et al. 2020 – Shmygol, N., Schiavone, F., Trokhymets, O., Pawliszczy, D., Koval, V., Zavgorodniy, R. and Vorfolomeiev, A. 2020. Model for assessing and implementing resource-efficient strategy of industry. CEUR Workshop Proceedings 2713, pp. 277–294.
Rogalski, T. 2018. A guide to support for Polish renewable energy sources following the 2018 amendments. [Online] https://www.nortonrosefulbright.com/de-de/wissen/publications/5932a770/a-guide-to-support -for-polish-renewable-energy-sources-following-the-2018-amendments [Accessed: 2021-09-05].
Tsimoshynska et al. 2021 – Tsimoshynska, O., Koval, M., Kryshtal, H., Filipishyna, L., Arsawan, W.E. and Koval, V. 2021. Investing in road construction infrastructure projects under public-private partnership in the form of concession. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2, pp. 184–192, DOI: 10.33271/nvngu/2021-2/184.
Yankovyi et al. 2021 – Yankovyi, O., Koval, V., Lazorenko, L., Poberezhets, O., Novikova, M. and Gonchar, V. 2021. Modeling Sustainable Economic Development Using Production Functions. Estudios de Economia Aplicada 39(5), DOI: 10.25115/eea.v39i5.5090.
Go to article

Authors and Affiliations

Viktor Koval
1
ORCID: ORCID
Yevheniia Sribna
2
ORCID: ORCID
Sylwester Kaczmarzewski
3
ORCID: ORCID
Alla Shapovalova
4
Viktor Stupnytskyi
5

  1. National Academy of Sciences of Ukraine, Ukraine
  2. National University of Water and Environmental Engineering, Ukraine
  3. Mineral and Energy Economy Research Institute Polish Akademy of Sciences, Kraków, Poland
  4. V.I. Vernadsky Taurida National University, Ukraine
  5. Dubno Branch Higher Education Institution «Open International University of Human Development «Ukraine», Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This article is devoted to an analytical review of the situation in the energy sector of Ukraine, taking into account constructive changes in the connection of the Ukrainian energy system to ENTSO-E and the destructive situation caused by industrial infrastructure failures and economic renewal. It focuses on Ukraine in the context of the principles of decentralization in the direction of significantly increasing the net cost of microgeneration, decarbonization and the transition to “green” energy. The national resource potential of energy-efficient and energy-saving technologies is systematized and the applied recommendations are provided to support state and local trends in energy sector development, namely energy storage projects, distributed generation and microgeneration based on Net Energy Metering to support small projects that solve energy problems. Included are institutional proposals for the establishment of the Agency for Decarbonization in Ukraine for the “green” transition, with broad powers of communication and the ability to make decisions on reducing carbon emissions in all areas. The possibility and expediency of using the concept of innovation is considered both from the global point of view of Ukrainian industry (with the potential prospect of using Ukraine’s industrial and logistics infrastructure as a mega-industrial park for the EU) and in the local sense of national energy, including improvements to the EU’s energy balance. It has been proven that the use of the nearshoring mechanism in Ukrainian industry in general, and in the energy sector in particular, can improve Europe’s energy balance, which has deteriorated over the past five years. Thus, the negative trend of the EU energy balance in thousands of tons of oil equivalent and in percentage terms was demonstrated. To improve the situation, the forecast of energy prices for individual EU countries was calculated taking into account Ukraine’s integration into the European energy system. The analysis and calculations revealed a potentially possible level of price reductions in some EU countries up to 20%. Recommendations are for improving energy-management efficiency at the regional level in particular, ensuring transparency in the development of renewable energy sources, using significant national potential of biofuels and increasing natural gas production, developing a business model of gas distribution center in Western Ukraine, which will be part of national gas distribution system and the European energy market.
Go to article

Authors and Affiliations

Oksana Borodina
1
ORCID: ORCID
Hanna Bratus
2
ORCID: ORCID
Viktoriia Udovychenko
3
ORCID: ORCID
Sylwester Kaczmarzewski
4
ORCID: ORCID
Valentyna Kostrychenko
5
ORCID: ORCID
Viktor Koval
6
ORCID: ORCID

  1. Institute of Industrial Economics of the National Academy of Sciences of Ukraine, Ukraine
  2. Interregional Academy of Personnel Management, Ukraine
  3. Taras Shevchenko National University of Kyiv, Ukraine
  4. Mineral and Energy Economy Research Institute Polish Akademy of Sciences, Kraków, Poland
  5. National University of Water and Environment Engineering, Ukraine
  6. National Academy of Sciences of Ukraine, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Increasing energy security in the face of rising energy demand and declining funding for fossil fuels has necessitated the diversification of energy supply and the shift to renewable energy. Sustainable management of energy supply is aimed at achieving a low-carbon intensity of production, especially in energy-intensive industries, including the mechanical-engineering industry. The article examines the possibility of shifting the current mechanical-engineering enterprise system and the technical, environmental and economic indicators of production to the new concept of the green economy, which will be an alternative to the further sustainable development of the industry. This article analyzes key approaches to energy conservation. An analytical model has been developed for calculating the energy risk of the mechanical-engineering enterprise and has built a context diagram of mechanical-engineering production, taking into account the environmental impact and the possibility of energy modernization, which allows the setting of strategic goals to ensure the sustainability of energy supply in the mechanical-engineering industry and develop the main principles of efficient enterprise activities in the context of increased risk. It has been proven that one of the criteria for increasing the profitability indicator is the adaptability of enterprises to external conditions and increasing alternative options for obtaining energy from our own autonomous sources.
Go to article

Authors and Affiliations

Inesa Mikhno
1
Oksana Redkva
2
ORCID: ORCID
Viktoriia Udovychenko
3
ORCID: ORCID
Oksana Tsimoshynska
4
ORCID: ORCID
Viktor Koval
5
ORCID: ORCID
Michał Kopacz
6
ORCID: ORCID

  1. National Aviation University, Kyiv, Ukraine
  2. Technical College of Ternopil Ivan Pul’uj National Technical University Ternopil, Ukraine
  3. Taras Shevchenko National University of Kyiv, Ukraine
  4. Interregional Academy of Personnel Management, Kyiv, Ukraine
  5. National Academy of Sciences of Ukraine, Ukraine
  6. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article presents an investigation of solar power plants’ economic efficiency in the case of energy prosumers. The economic effect of the development of solar energy, the environmental effect of the transition to green energy and the social effect due to lower electricity costs and investment growth from the use of photovoltaic installations (PVI) have been proven. The level of annual savings in PVI due to changes in production and own consumption of electricity are determined. Through use of factor analysis, the grouping method, the method of generalizing indicators, quantitative data collection for solar PV systems and the matrix method, the two main hypotheses were proven: (i) solar energy production should be stimulated by a sound state tariff policy; (ii) prosumers as players of the electricity market should be considered in the tariff policy. It is revealed that at current interest rates, PVI operational activity is subject to more complex factors, and the main one becomes economic, namely considering the economy of consumers, the level of taxation or grants of PVI activities, as well as productivity and the real state of technical condition of devices. The provided research develops the theoretical and empirical basis for the state policy of solar electricity usage with consideration to the peculiarities of its production and consumption. The process of production and consumption of electricity in PVI is not characterized by uniformity, which is derived from a number of factors, primarily from natural and climatic conditions. It also depends on the technical characteristics of the devices.
Go to article

Authors and Affiliations

Piotr Olczak
1
ORCID: ORCID
Dominika Matuszewska
2
ORCID: ORCID
Andrii Lishchenko
3
ORCID: ORCID
Iryna Zhydyk
4
ORCID: ORCID
Viktor Koval
5
ORCID: ORCID
Olga Iermakova
5
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
  2. Faculty of Energy and Fuels, AGH University of Science and Technology, Kraków, Poland
  3. Interregional Academy of Personnel Management, Ukraine
  4. National University of Water and Environmental Engineering, Ukraine
  5. National Academy of Sciences of Ukraine, Ukraine

This page uses 'cookies'. Learn more