Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on GX120Mn13 modification performed with the SiZr38 inoculant. The microstructure of Hadfield cast steel in as-cast condition was studied through optical microscopy before and after inoculant introduction into the liquid steel. After heat treatment, mechanical properties and wear resistance tests were conducted to analyse the influence of the inoculant. The wear rate was determined according to the Standard Test Method for Determination of Slurry Abrasivity (ASTM G-75). The results show that average grain diameter, area of eqiuaxed grains crystallization and secondary dendrite arm spacing were lower after inoculation. After inoculation, the ultimate tensile strength and proof strength were higher by 8% and 4% respectively, in comparison to the initial state. The results of abrasion wear tests show that the introduction of 0.02 wt. % of zirconium significantly improved wear resistance, which was 34% better in comparison to steel without zirconium.
Go to article

Bibliography

[1] Zambrano, O.A., Tressia, G. & Souza, R.M. (2020). Failure analysis of a crossing rail made of Hadfield steel after severe plastic deformation induced by wheel-rail interaction. Engineering Failure Analysis. 115, 104621. DOI: 10.1016/j.engfailanal.2020.104621
[2] Chen, C., Lv, B., Feng, X., Zhang, F. & Beladi, H. (2018). Strain hardening and nanocrystallization behaviors in Hadfield steel subjected to surface severe plastic deformation. Materials Science and Engineering: A. 729, 178-184. DOI: 10.1016/j.msea.2018.05.059.
[3] Fujikura, M. (1986). Récents développements au Japon d’aciers austénitiques au Mn destinés aux applications amagnétiques. Matériaux & Techniques. 74, 341-353. DOI: 10.1051/mattech/198674070341.
[4] Chen, C., Zhang, F.C., Wang, F., Liu, H. & Yu B.D. (2017). Efect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel. Materials Science & Engineering A. 679, 95-103. DOI: 10.1016/j.msea.2016.09.106.
[5] Pribulová, A., Babic, J. & Baricová, D. (2011) Influence of Hadfield´s steel chemical composition on its mechanical properties. Chem. Listy. 105, 430-432.
[6] Kasińska, J. (2020). The Morphology of Impact Fracture Surfaces in Manganese Cast Steel Modified by Rare Earth Elements. Archives of Foundry Engineering. 20, 89-94. DOI: 10.24425/afe.2020.131308.
[7] Guzman, Fernandes, P.E. & Arruda, Santos, L. (2020). Effect of titanium and nitrogen inoculation on the microstructure, mechanical properties and abrasive wear resistance of Hadfield Steels. REM - International Engineering Journal. 73(5), 77-83. https://doi.org/10.1590/0370-44672019730023.
[8] Vdovin, K.N., Feoktistov, N.A., Gorlenko, D.A. et al. (2019). Modification of High-Manganese Steel Castings with Titanium Carbonitride. Steel Transl. 3, 147-151. https://doi.org/10.3103/S0967091219030136.
[9] Gürol, U., Karadeniz, E., Çoban, O., & Kurnaz, S.C. (2021). Casting properties of ASTM A128 Gr. E1 steel modified with Mn-alloying and titanium ladle treatment. China Foundry. 18, 199-206. https://doi.org/10.1007/s41230-021-1002-1
[10] Haakonsen, F., Solberg, J.K., Klevan, O. & Van der Eijk, C. (2011). Grain refinement of austenitic manganese steels. In AISTech - Iron and Steel Technology Conference Proceedings, 5-6 May 2011. Volume 2, 763-771, Indianapolis, USA. ISBN: 978-1-935117-19-3
[11] El-Fawkhry, M.K., Fathy, A.M., Eissa, M. & El-Faramway H. (2014). Eliminating heat treatment of hadfield steel in stress abrasion wear applications. International Journal of Metalcasting. 8, 29-36. DOI: 10.1007/BF03355569.
[12] Issagulov, A.Z., Akhmetov, A.B., Naboko, Ye.P., Kusainova, G.D. & Kuszhanova, A.A. (2016). The research of modification process of steel Hadfield integrated alloy ferroalumisilicocalcium (Fe-Al-Si-Сa/FASC). Metalurgija. 55(3), 333-336.
[13] Zykova, A., Popova, N., Kalashnikov, M. & Kurzina, I. (2017). Fine structure and phase composition of Fe–14Mn–1.2C steel: influence of a modified mixture based on refractory metals. International Journal of Minerals, Metallurgy and Materials. 24(5), 523-529. DOI: 10.1007/s12613-017-1433-2.
[14] Bartlett, L.N. & Avila, B.R. (2016). Grain refinement in lightweight advanced high-strength steel castings. International Journal of Metalcasting. 10, 401-420, DOI: 10.1007/s40962-016-0048-0.

Go to article

Authors and Affiliations

S. Sobula
1
ORCID: ORCID
S. Kraiński
2

  1. AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
  2. PGO S.A. Pioma Odlewnia, Oddział w Piotrkowie Trybunalskim, ul. Romana Dmowskiego 38, 97-300 Piotrków Trybunalski, Poland

This page uses 'cookies'. Learn more