Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper describes successfully formed ohmic contacts to p-type 4H-SiC based on titanium-aluminum alloys. Four different metallization structures were examined, varying in aluminum layer thickness (25, 50, 75, 100 nm) and with constant thickness of the titanium layer (50 nm). Structures were annealed within the temperature range of 800°C - 1100°C and then electrically characterized. The best electrical parameters and linear, ohmic character of contacts demonstrated structures with Al layer thickness equal or greater than that of Ti layer and annealed at temperatures of 1000°C or higher.
Go to article

Bibliography

[1] T. Ohshima, S. Onoda, N. Iwamoto, T. Makino, M. Arai, and Y. Tanak, “Radiation Response of Silicon Carbide Diodes and Transistors,” in Physics and Technology of Silicon Carbide Devices, 2012. DOI: 10.5772/51371.
[2] Y. Zhang, T. Guo, X. Tang, J. Yang, Y. He, and Y. Zhang, “Thermal stability study of n-type and p-type ohmic contacts simultaneously formed on 4H-SiC,” J. Alloys Compd., vol. 731, pp. 1267–1274, 2018. DOI: 10.1016/j.jallcom.2017.10.086.
[3] Y. Huang, J. Buettner, B. Lechner, and G. Wachutka, “The impact of non-ideal ohmic contacts on the performance of high-voltage SIC MPS diodes,” Mater. Sci. Forum, vol. 963 MSF, pp. 553–557, 2019. DOI: 10.4028/www.scientific.net/MSF.963.553.
[4] F. Roccaforte et al., “Ti/Al-based contacts to p-type SiC and GaN for power device applications,” Phys. Status Solidi Appl. Mater. Sci., vol. 214, no. 4, 2017. DOI: 10.1002/pssa.201600357.
[5] M. Rambach, A. J. Bauer, and H. Ryssel, “Electrical and topographical characterization of aluminum implanted layers in 4H silicon carbide,” Phys. Status Solidi Basic Res., vol. 245, no. 7, pp. 1315–1326, 2008. DOI: 10.1002/pssb.200743510.
[6] F. Roccaforte, F. Giannazzo, and V. Raineri, “Nanoscale transport properties at silicon carbide interfaces,” J. Phys. D. Appl. Phys., vol. 43, no. 22, 2010. DOI: 10.1088/0022-3727/43/22/223001.
[7] T. Abi-Tannous et al., “A Study on the Temperature of Ohmic Contact to p-Type SiC Based on Ti3SiC2 Phase,” IEEE Trans. Electron Devices, vol. 63, no. 6, pp. 2462–2468, 2016. DOI: 10.1109/TED.2016.2556725.
[8] D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. New Jersey: John Wiley & Sons, Inc., Hoboken, 2006.
[9] K. Buchholt et al., “Ohmic contact properties of magnetron sputtered Ti3SiC2 on n- and p-type 4H-silicon carbide,” Appl. Phys. Lett., vol. 98, no. 4, pp. 2–5, 2011. DOI: 10.1063/1.3549198.
[10] T. Abi-Tannous et al., “Thermally stable ohmic contact to p-type 4H-SiC based on Ti3SiC2 phase,” Mater. Sci. Forum, vol. 858, pp. 553–556, 2016. DOI: 10.4028/www.scientific.net/MSF.858.553.
[11] F. Roccaforte et al., “Metal/semiconductor contacts to silicon carbide: Physics and technology,” Mater. Sci. Forum, vol. 924 MSF, pp. 339–344, 2018. DOI: 10.4028/www.scientific.net/MSF.924.339.
[12] G. S. Marlow and M. B. Das, “The effects of contact size and non-zero metal resistance on the determination of specific contact resistance,” Solid State Electron., vol. 25, no. 2, pp. 91–94, 1982. DOI: 10.1016/0038-1101(82)90036-3.
[13] G. K. Reeves, “Specific contact resistance using a circular transmission line model,” Solid State Electron., vol. 23, no. 5, pp. 487–490, 1980. DOI: 10.1016/0038-1101(80)90086-6.
[14] Z. Wang, W. Liu, and C. Wang, “Recent Progress in Ohmic Contacts to Silicon Carbide for High-Temperature Applications,” J. Electron. Mater., vol. 45, no. 1, pp. 267–284, 2016. DOI: 10.1007/s11664-015-4107-8.
[15] M. Vivona, G. Greco, C. Bongiorno, R. Lo Nigro, S. Scalese, and F. Roccaforte, “Electrical and structural properties of surfaces and interfaces in Ti/Al/Ni Ohmic contacts to p-type implanted 4H-SiC,” Appl. Surf. Sci., vol. 420, pp. 331–335, 2017. DOI: 10.1016/j.apsusc.2017.05.065.
[16] S. Rao, G. Pangallo, and F. G. Della Corte, “Highly Linear Temperature Sensor Based on 4H-Silicon Carbide p-i-n Diodes,” IEEE Electron Device Lett., vol. 36, no. 11, pp. 1205–1208, 2015. DOI: 10.1109/LED.2015.2481721.
[17] L. Lanni, B. G. Malm, M. Ostling, and C. M. Zetterling, “500°C bipolar integrated OR/NOR Gate in 4H-SiC,” IEEE Electron Device Lett., vol. 34, no. 9, pp. 1091–1093, 2013. DOI: 10.1109/LED.2013.2272649.
[18] W. Sung and B. J. Baliga, “Monolithically Integrated 4H-SiC MOSFET and JBS Diode (JBSFET) Using a Single Ohmic/Schottky Process Scheme,” IEEE Electron Device Lett., vol. 37, no. 12, pp. 1605–1608, 2016. DOI: 10.1109/LED.2016.2618720.
[19] C. Han et al., “An Improved ICP Etching for Mesa-Terminated 4H-SiC p-i-n Diodes,” IEEE Trans. Electron Devices, vol. 62, no. 4, pp. 1223–1229, 2015. DOI: 10.1109/TED.2015.2403615.
Go to article

Authors and Affiliations

Agnieszka Martychowiec
1
Norbert Kwietniewski
1
Kinga Kondracka
1
Aleksander Werbowy
1
Mariusz Sochacki
1

  1. Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland

This page uses 'cookies'. Learn more