Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes the application of the digital numerical control (DNC) technique to connect the smart meter to the inspection system and evaluate the total harmonic distortion (THD) value of power supply voltage in IEEE 519 standard by measuring the system. Experimental design by the Taguchi method is proposed to evaluate the compatibility factors to choose Urethane material as an alternative to SS400 material for roller fabrication at the machining center. Computer vision uses artificial intelligence (AI) technique to identify object iron color in distinguishing black for urethane material and white for SS400 material, color recognition results are evaluated by measuring system, system measurement is locked when the object of identification is white material SS400. Computer vision using AI technology is also used to recognize facial objects and control the layout of machining staff positions according to their respective skills. The results obtained after the study are that the surface scratches in the machining center are reduced from 100% to zero defects and the surface polishing process is eliminated, shortening production lead time, and reducing 2 employees. The total operating cost of the processing line decreased by 5785 USD per year. Minitab 18.0 software uses statistical model analysis, experimental design, and Taguchi technical analysis to evaluate the process and experimentally convert materials for roller production. MATLAB 2022a runs a computer vision model using artificial intelligence (AI) to recognize color objects to classify Urethane and SS400 materials and recognize the faces of people who control employee layout positions according to their respective skills.
Go to article

Authors and Affiliations

Minh Ly Duc
1 2
Petr Bilik
2

  1. Faculty of Commerce, Van Lang University, 700000, Vietnam
  2. VSB–Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department ofCybernetics, and Biomedical Engineering, 708 00, Ostrava, Czech Republic

This page uses 'cookies'. Learn more