Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Keywords Fan CFD Cyclorotor
Download PDF Download RIS Download Bibtex

Bibliography

[1] Morandini M., Xisto C., Pascoa J., Quaranta G., Gagnon L., Masarati P.: Aeroelastic analysis of a cycloidal rotor under various operating conditions. J. Aircraft. 55(2018), 4, 1675–1688.
[2] Muscarello V., Masarati P., Quaranta G., Georges T., Gomand J., Malburet F., Marilena P.: Instability mechanism of roll/lateral biodynamic rotorcraft–pilot couplings. J. Am. Helicopter Soc. 63(2018), 1–13.
[3] Xisto C. Leger J., Pascoa J., Gagnon L., Masarati P., Angeli D., Dumas A.: Parametric analysis of a large-scale cycloidal rotor in hovering conditions. J. Aerospace Eng. 30(2017), 1.
[4] Xisto C., Pascoa J., Abdollahzadeh M., Leger J., Masarati P., Gagnon L., Schwaiger M., Wills D.: PECyT – plasma enhanced cycloidal thruster. In: Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. July 28–30, 2014, Cleveland.
[5] Andrisani A., Angeli D., Dumas A.: Optimal pitching schedules for a cycloidal rotor in hovering. Aircr. Eng. Aerosp. Tec. 88(2016), 5.
[6] Xisto C., Pascoa J., Leger J.: Cycloidal rotor propulsion system with plasma enhanced aerodynamics. In: Proc. ASME 2014 Int.l Mechanical Engineering Congress and Exposition; Montreal, Nov. 14–20, 2014; V001T01A005.
[7] Xisto C., Pascoa J., Trancossi M.: Geometrical parameters influencing the aerodynamic efficiency of a small-scale self-pitch high solidity VAWT. J. Sol. Energy Eng. 138(2016), 031006.
[8] Benedict M.: Fundamental understanding of cycloidal-rotor concept for micro air vehicle applications. PhD thesis, Univ. Maryland, College Park, 2010.
[9] Benedict M., Ramasamy M., Chopra I.: Improving the aerodynamic performance of micro-air-vehicle-scale cycloidal rotor: An experimental approach. J. Aircraft 47(20104), 1117–1125.
[10] Heimerl J., Halder A., Benedict M.: Experimental and computational investigation of a UAV-scale cycloidal rotor in forward flight. In: Proc. The Vertical Flight Society’s 77th Ann. Vertical Flight Society Forum and Technology Display, The Future of Vertical Flight, Virtual, May 10–14, 2021.
[11] Halder A., Benedict M.: Nonlinear aeroelastic coupled trim analysis of a twin cyclocopter in forward flight. AIAA J., 59, 2021, 305–319.
[12] Lee B., Saj V., Benedict M., Kalathil D.: A Vision-Based Control Method for Autonomous Landing Of Vertical Flight Aircraft On A Moving Platform Without Using GPS. In: Proc. The Vertical Flight Society’s, 76th Ann. Forum and Technology Display, Virtual, Oct. 5–8, 2020.
[13] Denton H., Benedict M., Kang H., Hrishikeshavan V.: Design, development and flight testing of a gun-launched rotary-wing micro air vehicle. In: Proc. The Vertical Flight Society’s, 76th Ann. Forum and Technology Display, Virtual, Oct. 5–8, 2020.
[14] Halder A., Benedict M.: Understanding upward scalability of cycloidal rotors for large-scale UAS applications. In: Proc. Aeromechanics for Advanced Vertical Flight Technical Meeting 2020, Transformative Vertical Flight 2020, San Jose, 21–23 Jan. 2020, 311–330.
[15] Runco C., Benedict M.: Flight dynamics model identification of a meso-scale twin-cyclocopter in hover. Paper presented at the 77th Ann. Vertical Flight Society Forum and Technology Display, The Future of Vertical Flight, Virtual, May 10-14, 2021.
[16] Runco C., Coleman D., Benedict M.: Design and development of a 30 g cyclocopter. J. Am. Helicopter Soc. 64(2019), 1.
[17] Coleman D., Halder A., Saemi F., Runco C., Denton H., Lee B., Benedict M.: Development of “Aria”, a compact, ultra-quiet personal electric helicopter. In: Proc. 77th Annual Vertical Flight Society Forum and Technology Display, FORUM 2021: The Future of Vertical Flight, Virtual, May 10–14, 2021.
[18] Koschorrek P., Siebert Ch., Haghani A., Jeinsch T.: Dynamic positioning with active roll reduction using Voith Schneider propeller. IFAC-PapersOnLine, 48(2015), 16, 178–183.
[19] Schubert A., Koschorrek P., Kurowski M., Lampe B., Jeinsch T.: Roll damping using Voith Schneider propeller a repetitive control approach. IFACPapersOnLine 49(2016), 23, 557–561.
[20] Hahn T., Koschorrek P., Jeinsch T.: Parameter estimation of wave-induced oscillatory ship motion for wave filtering in dynamic positioning. IFAC-PapersOnLine 51(2018), 29, 183–188.
[21] Hashem I., Mohamed M.H.: Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy 142(2018), 531–545
[22] Siegel S.: Numerical benchmarking study of a cycloidal wave energy converter. Renew. Energ. 134(2019), 390–405.
[23] Siegel S.: Wave radiation of a cycloidal wave energy converter. Appl. Ocean Res. 49(2015), 9–19.
[24] Bianchini A., Balduzzi F., Rainbird J., Peiro J., Graham M., Ferrara G.: An experimental and numerical assessment of airfoil polars for use in Darrieus wind turbines – Part I: Flow curvature effects. J. Eng. Gas Turb. Power 138(2016), 032602-1.
[25] Dykas S., Majkut M., Smołka K., Strozik M., Chmielniak T., Stasko T.: Numerical and experimental investigation of the fan with cycloidal rotor. Mech. Mechanical Eng. 22(2018), 2, 447–454.
[26] Stasko T., Dykas S., Majkut M., Smołka K.: An attempt to evaluate the cycloidal rotor fan performance, Open J. Fluid Dyn. 9(2019), 292–30.
[27] Shyy W., Lian Y., Tang J., Viieru D., Liu H.: Aerodynamics of Low Reynolds Flyers. Cambridge Univ. Press, 2008.
[28] Ansys Fluent User Guide 2020 R1. Ansys, Canonsburg 2020.
[29] Shrestha E., Yeo D., Benedict M., Chopra I.: Development of a meso-scale cycloidal-rotor aircraft for micro air vehicle application. Int. J. Micro Air Veh. 9(2017), 3.
[30] Augusto J., Monteiro L., Pascoa J., Xisto C.: Aerodynamic optimization of cyclorotors. Aircraft Eng. Aerosp. Tec. 88(2016), 2.
Go to article

Authors and Affiliations

Tomasz Staśko
1
Mirosław Majkut
1
Sławomir Dykas
1
Krystian Smołka
1

  1. Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more