Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Recent climate changes stimulate the search and introduction of solutions for the reduction of the anthropogenic effect upon the environment. Transition to the oxy-fuel combustion power cycles is an advanced method of CO2 emission reduction. In these energy units, the main fuel is natural gas but the cycles may also work on syngas produced by the solid fuel gasification process. This paper discloses a new highly efficient oxy-fuel combustion power cycle with coal gasification, which utilizes the syngas heat in two additional nitrogen gas turbine units. The cycle mathematics simulation and optimization result with the energy unit net efficiency of 40.43%. Parametric studies of the cycle show influence of the parameters upon the energy unit net efficiency. Change of the cycle fuel from natural gas to coal is followed by a nearly twice increase of the carbon dioxide emission from 4.63 to 9.92 gmCO2/kWh.
Go to article

Bibliography

[1] Letcher T.M.: Why do we have global warming? In: Managing Global Warming. An Interface of Technology and Human Issues . Academic Press, 2019, 3–15.
[2] Rogalev A., Komarov I., Kindra V., Zlyvko O.: Entrepreneurial assessment of sustainable development technologies for power energy sector. Entrep. Sustain. Iss. 6(2018), 1, 429–445.
[3] Bose B.K.: Global warming: Energy, environmental pollution, and the impact of power electronics. IEE Ind. Electron. M. 4(2010), 1, 6–17.
[4] Huang W., Chen W., Anandarajah G.: The role of technology diffusion in a decarbonizing world to limit global warming to well below 2C: An assessment with application of Global TIMES model. Appl. Energ. 208(2017), 291–301.
[5] Ziółkowski P., Zakrzewski W., Badur J., Kaczmarczyk O.: Thermodynamic analysis of the double Brayton cycle with the use of oxy combustion and capture of CO2. Arch. Thermodyn. 34(2013), 2, 23–38.
[6] Barba F.C., Sanchez G.M.D., Segui B.S., Darabkhani H.G., Anthony E.J.: A technical evaluation, performance analysis and risk assessment of multiple novel oxy-turbine power cycles with complete CO2 capture. J. Clean. Prod. 133(2016), 971–985.
[7] Kotowicz J., Job M.: Thermodynamic analysis of the advanced zero emission power plant. Arch. Thermodyn. 37(2016), 1, 87–98.
[8] Allam R.J., Palmer M.R., Brown G.W.J., Fetvedt J., Freed D., Nomoto H., Itoh M., Okita N., Jones C.J.: High efficiency and low cost of electricity generation from fossil fuels while elimi-nating atmospheric emissions, including carbon dioxide. Enrgy Proced. 37(2013), 1135–1149.
[9] Khallaghi N., Hanak D. P., Manovic V.: Techno-economic evaluation of nearzero CO2 emission gas-fired power generation technologies: A review. J. Nat. Gas Sci. Eng. 74(2020), 103095.
[10] Scaccabarozzi R., Gatti M., Martelli E.: Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle. Appl. Energ. 178(2016), 505–526.
[11] Rogalev A., Kindra V., Osipov S., Rogalev N.: Thermodynamic analysis of the net power oxy-combustion cycle. In: Proc. 13th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, ETC13, Lausanne April 8-12, 2018, ETC2019-030.
[12] Martins F., Felgueiras C., Smitkova M., Caetano N.: Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12(2019), 6, 964.
[13] Warner K.J., Jones G.A.: The 21st century coal question: China, India, development, and climate change. Atmosphere 10(2019), 8, 476.
[14] Hume S.: Performance evaluation of a supercritical CO2 power cycle coal gasification plant. In: Proc. 5th Int. Symp. of Supercritical CO2 Power Cycles, San Antonio, 2016.
[15] Weiland N., Shelton W., White C., Gray D.: Performance baseline for directfired sCO2 cycles. In: Proc. 5th Int. Symp. of Supercritical CO2 Power Cycles, San Antonio, 2016.
[16] Weiland N., White C.: Techno-economic analysis of an integrated gasification direct-fired supercritical CO2 power cycle. Fuel 212(2018), 613–625.
[17] Zhao Y., Zhao L.,Wang B., Zhang S., Chi J., Xiao Y.: Thermodynamic analysis of a novel dual expansion coal-fueled direct-fired supercritical carbon dioxide power cycle. Appl. Energ. 217(2018), 480–495.
[18] Zhao Y., Wang B., Chi J., Xiao Y.: Parametric study of a direct-fired supercritical carbon dioxide power cycle coupled to coal gasification process. Energ. Convers. Manage. 156(2018), 733–745.
[19] Cormos C.Cr.: Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS). Energy 42(2012), 434–445.
[20] Ebrahimi A., Meratizaman M., Reyhani H. A., Pourali O., Amidpour M.: Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit. Energy 90(2015), 1298–1316. [21] Kindra V., Rogalev A., Zlyvko O., Zonov A., Smirnov M., Kaplanovich I.: Research on oxy-fuel combustion power cycle using nitrogen for turbine cooling. Arch. Thermodyn. 41(2020), 4, 191–202.
Go to article

Authors and Affiliations

Vladimir Kindra
1
Andrey Rogalev
1
Olga Vladimirovna Zlyvko
Vladimir Sokolov
1
Igor Milukov
1

  1. National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia

This page uses 'cookies'. Learn more