Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Data
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The phenomenon of “soft zone” is occurring in the heat affected zone (HAZ) of high strength low alloy (HSLA) steels. Therefore, the process of weld metal solidification and phase transformation in HAZ is essential to understand the behaviour of the material, especially in the case where welded joints are debilitating part of the construction. The simulation program SYSWELD is powerful tool to predict solidification and phase transformation of welding joint, what correspond to the mechanical properties of the joints. To achieve relevant results of the simulation, it is necessary to use right mathematic-material model of the investigated material. Dilatometric test is the important methods to gather necessary input values for material database. In this paper is investigated physical and metallurgical properties of S960MC steel. The dilatometric curves were carried out on the laboratory machine dilatometer DIL 805L. In addition to determination of the phase transformation temperatures at eight levels of the cooling rate, the microstructure and hardness of the material are further analysed. The hardness of the samples reflects the achieved microstructure. Depending on the cooling rate, several austenitic transformation products were observed such as pearlite, bainite, martensite and many different ferritic microstructures. The differences between the transformation temperature results using the first derivation method and the three tangent method are up to 2%. The limit cooling rate was set at value 30°C/s. The microstructure consists only of bainite and martensite and the hardness reaches a value of 348HV and higher.
Go to article

Bibliography

[1] Jambor, M., Nový, F., Mičian, M., Trsko, L., Bokůvka, O., Pastorek, F., & Harmaniak, D. (2018). Gas metal arc wleding of thermo-mechanically controlled processed S960MC steel thin sheets with different welding parameters. Communications - Scientific Letters of the University of Žilina. 20, 29-35. DOI: 10.26552.C.2018.4.29-35.
[2] Gu, Y., Tian, P., Wang, X., Han, X., Liao, B., Xiao, E. Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process. Materials & Design. 89, 589-596. DOI: 10.1016/j.matdes.2015.09.039.
[3] Schneider, C., Ernst, W., Schnitzer, R., Staufer, H., Vallant, R., & Enzinger, N. (2018). Welding of S960MC with undermatching filler material. Weld World. 62, 801-809. DOI: 10.1007/s40194-018-0570-1.
[4] Porter, D., Laukkanen, A., Nevasmaa, P., Rahka, K., Wallin, K. (2004). Performance of TMCP steel with respect to mechanical properties after cold forming and post-forming heat treatement. International Journal of Pressure Vessels and Piping. 81, 867-877. DOI: 10.1016/j.ijpvp.2004.07.006.
[5] Kik, T., Górka, J., Kotarska, A. & Poloczek, T. (2020). Numerical verification of tests on the influence of the imposed thermal cycles on the structure and properties of the S700MC heat-affected zone. Metals. 10, 974. DOI: 10.3390/met10070974.
[6] Mičian, M., Harmaniak, D., Nový, F., Winczek, J., Moravec, J. & Trško, L. (2020). Effect of the t8/5 cooling time on the properties of S960MC steel in the HAZ of welded joints evaluated by thermal physical simulation. Metals. 10(2), 229. DOI: 10.3390/met10020229.
[7] Górka, J., Janicki, D., Fidali, M., & Jamrozik, W. (2017). Thermographic assessment of the HAZ properties and structure of thermomechanically treated steel. International Journal of Thermophysics. 38, 183-203. DOI: 10.1007/s10765-017-2320-9.
[8] Gomez, M., Vales, P., & Medina S.F. (2011). Evolution of microstructure and precipitation state during thermomechanical processing of a X80 microalloyed steel. Materials Science and Engineering: A. 528, 4761-4773. DOI: 10.1016/j.msea.2011.02.087.
[9] Qiang, X., Bijlaard, F.S.K., & Kolstein, H., (2013) Post-fire performance of very high strength steel S960. Journal of Constructional Steel Research. 80, 235-242. DOI: 10.1016/.jcsr.2012.09.002.
[10] Moon, A.P., Balasubramaniam, R., & Panda, B. (2010) Hydrogen embrittlement of microalloyed rail steels. Materials Science and Engineering: A. 527, 3259-3263. DOI: 10.1016/j.msea.2010.02.013.
[11] Zhao, J., Jiang, Z., Kim, J. S., and Lee, C. S. (2013). Effects of tungsten on continuous cooling transformation characteristic of microalloyed steels. Materials and Design. 49, 252-258. DOI: 10.1016/j.matdes.2013.01.056.
[12] Villalobos, J.C., Del-Pozo, A., Campillo, B., Mayen, J., Serna, S. Microalloyed steels trough history until 2018: Review of chemical composition, processing and Hydrogen service. Metals. 8, 1-49. DOI: 10.3390/met8050351.
[13] Krauss, G. (2015). Steels: processing, structure and performance. Ohio, ASM International. Available on the Internet: https://www.asminternational.org/documents/ 10192/0/05441G_TOC+%282%29.pdf/82ee161b-e171-9960-caab-74619423b6a4.
[14] Fonda, R. W., Vandermeer, R. A., & Spanos, G. (1998). Continuous Cooling Transformation (CCT) Diagrams for advanced navy welding consumables. Naval Research Laboratory, United States Navy. DOI: NRL/MR/6324—98-8185
[15] Kawulok, P., Kawulok, R., & Rusz, S. (2017). Methodology of compiling decay diagrams of the CCT and DCCT type (i.e. also with regard to the influence of previous deformation (in Czech), Retrieved October 10, 2020. Available on the Internet: https://www.fmt.vsb.cz/export/sites/fmt/633/cs/studium/navody-k-cviceni/deformacni-chovani-materialu/cviceni-12/Doc/cv12.pdf.
[16] Moravec, J., Novakova, I., Sobotka, J. et al. (2019). Determination of grain growth kinetics and assessment of welding effect on properties of S700MC steel in the HAZ of welded joints. Metals. 9(6). DOI: 10.3390/met9060707.
[17] Palček, P., Hadzima, B., Chalupová, M. (2004). Experimental methods in engineering materials (in Slovak) Žilina, EDIS ŽU Žilina, ISBN 80-8070-179-2.
[18] Pawlowski, B., Bala, P. & Dziurka, P. (2014). Improper interpretation of dilatometric data for cooling transformation in steels. Archives of Metallurgy and Materials. 59(3), 1159-1161. DOI: 10.2478/amm-2014-0202.
[19] Herath, D., Mendez, P.F., Kamyabi-Gol, A. (2017). A comparison of common and new methods to determine martensite start temperature using a dilatometer. Canadian Metallurgical Quarterly. 56, 85-93. DOI: 10.1080/00084433.2016.1267903.
[20] Vondráček, J. (2013) Influence of heating and cooling rate on transformational changes of material (in Czech), Bachelor thesis, Technical University of Liberec, Czech Republic. Available on the Internet: https://dspace.tul.cz/bitstream/handle/15240/153925/Bakalarska_prace_Vliv_rychlosti_ohrevu_a_ochlazovani_na_transformacni_zmeny_materialu_Jiri_Vondracek.pdf?sequence=1.
[21] Bräutigam–Matus, K., Altamirano, G., Salinas, A., Flores, A. & Goodwin, F. (2018). Experimental Determination of Continuous Cooling Transformation (CCT) Diagrams for Dual-Phase Steels from the Intercritical Temperature Range. Metals. 8, 674. https://doi.org/10.3390/met8090674.
[22] Yang, X., Yu, W., Tang, D., Shi, J., Li, Y., Fan, J., Mei, D., & Du, Q. (2020). Effect of cooling rate and austenite deformation on hardness and microstructure of 960MPa high strength steel. Science and Engineering of Composite Materials. 27(1), 415-423. DOI: https://doi.org/10.1515/secm-2020-0045.
[23] Pawłowski, B., Bała, P. & Dziurka, R. (2014). Improper interpretation of dilatometric data for cooling transformation in steels. Archives of Metallurgy and Materials. 59(3). DOI: 10.2478/amm-2014-0202.
[24] Motyčka, P., Kovér, M. (2012). Evaluation methods of dilatometer curves of phase transformations. In COMAT 2012, 2nd International Conference on Recent Trends in Structural Materials, 21-22 November 2012, Plzeň, Czech Republic, Recent trends in structural materials. Available on the Internet: http://comat2012.tanger.cz/files/proceedings/11/reports/1237.pdf.
[25] Ghafouri, M., Ahn, J., Mourujärvi, J., Björk, T., Larkiola, J. (2020) Finite element simulation of welding distortions in ultra-high strength steel S960 MC including comprehensive thermal and solid-state phase transformation models, Engineering Structures. 219, DOI: 10.1016/j.engstruct.2020.110804.
[26] Bayock, F.N., Kah, P., Mvola, B., Layus, P. (2019). Effect of heat input and undermatched filler wire on the microstructure and mechanical properties of dissimilar S700MC/S960QC high-strength steels. Metals. (9). DOI: 10.3390/met9080883
Go to article

Authors and Affiliations

M. Málek
1
M. Mičian
1
ORCID: ORCID
J. Moravec
1

  1. Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec I, Czech Republic

This page uses 'cookies'. Learn more