Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

One of the most critical factors which determine the accuracy of deformation maps provided by Differential Synthetic Aperture Radar Interferometry (DInSAR) are atmospheric artefacts. Nowadays, one of the most popular approaches to minimize atmospheric artefacts is Generic Atmospheric Correction Online Service for InSAR (GACOS). Nevertheless, in the literature, the authors reported various effects of GACOS correction on the deformation estimates in different study areas Therefore, this paper aims to assess the effect of GACOS correction on the accuracy of DInSAR-based deformation monitoring in USCB by using Sentinel-1 data. For the accuracy evaluation, eight Global Navigation Satellite Systems (GNSS) permanent stations, as well as five low-cost GNSS receivers were utilized. GACOS-based DInSAR products were evaluated for: (1) single interferograms in different geometries; (2) cumulative deformation maps in various geometries and (3) decomposed results delivered from GACOS-based DInSAR measurements. Generally, based on the achieved results, GACOS correction had a positive effect on the accuracy of the deformation estimates in USCB by using DInSAR approach and Sentinel-1 data in each before mentioned aspect. When considering (1), it was possible to achieve Root Mean Square Error (RMSE) below 1 cm for a single interferogram for only 20% and 26% of the ascending and descending investigated interferograms, respectively when compared with GNSS measurements. The RMSE below 2 cm was achieved by 47% and 66% of the descending and ascending interferograms, respectively.
Go to article

Bibliography

Berardino, P., Fornaro, G., Lanari, R. et. al. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens., 40, 2375–2383. DOI: 10.1109/TGRS.2002.803792.
Biagi, L., Grec, F.C., and Negretti, M. (2016). Low-cost GNSS receivers for local monitoring: Experimental simulation, and analysis of displacements. Sensors, 16(12), 2140. DOI: 10.3390/s16122140.
Boehm, J., Niell, A., Tregoning, P. et al. (2006). Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett., 33, 7. DOI: 10.1029/2005GL025546.
Cianflone, G., Tolomei, C., Brunori, C.A. et al. (2015). InSAR time series analysis of natural and anthropogenic coastal plain subsidence: The case of sibari (Southern Italy). Remote Sens., 7, 16004–16023. DOI: 10.3390/rs71215812.
Chen, G. and Herring, T.A. (1997). Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophys. Res. Solid Earth, 102, 20489–20502. DOI: 10.1029/97jb01739.
Dach, R., Lutz, S., Walser, P. et al. (2015). Bernese GNSS software version 5.2. Dach, R., Schaer, S., Arnold, D. et. al. (2018). CODE final product series for the IGS. Astronomical Institute, University of Bern.
Darvishi, M., Cuozzo, G., Bruzzone, L. et al. (2020). Performance Evaluation of Phase andWeather-Based Models in Atmospheric Correction with Sentinel-1Data: Corvara Landslide in the Alps. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 13, 1332–1346. DOI: 10.1109/JSTARS.2020.2969726.
Ferretti, A., Prati, C. and Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens., 39, 8–20. DOI: 10.1109/36.898661.
Graniczny, M., Kowalski, Z., Przyłucka, M., et al. (2014). Application of SAR data for the monitoring of ground deformations caused by mining activities in the area of the upper Silesian Coal Basin: the results of DORIS project (EC-FP7). Przegląd Górniczy, 70(12), 11–19.
Hanssen, R.F. (2001). Radar interferometry: data interpretation and error analysis. Springer Science & Business Media.
Li, Z., Fielding, E.J., Cross, P. et al. (2009). Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. Int. J. Remote Sens., 30(13). DOI: 10.1080/ 01431160802562172.
Liu, Z., Zhou, C., Fu, H. et. al. (2020). A framework for correcting ionospheric artifacts and atmospheric effects to generate high accuracy InSAR DEM. Remote Sens., 12, 318. DOI: 10.3390/rs12020318.
Meyer, F.J., Chotoo, K., Chotoo, S.D. et. al. (2016). The Influence of Equatorial Scintillation on LBand SAR Image Quality and Phase. IEEE Trans Geosci Remote Sens., 54, 869–880. DOI: 10.1109/TGRS.2015.2468573.
Murray, K.D., Bekaert, D.P.S. and Lohman, R.B. (2019). Tropospheric corrections for InSAR: Statistical assessments and applications to the Central United States and Mexico. Remote Sens. Environ., 232, 111326. DOI: 10.1016/j.rse.2019.111326.
Mutke, G., Kotyrba, A., Lurka, A. et. al. (2019). Upper Silesian Geophysical Observation System. A unit of the EPOS project. J. Sustain. Min., 18, 198–207. DOI: 10.1016/j.jsm.2019.07.005.
Ng, A.H.-M., Ge, L., Zhang, K. et. al. (2011). Deformation mapping in three dimensions for underground mining using InSAR – Southern highland coalfield in New South Wales, Australia. Int. J. Remote Sens., 32, 7227–7256. DOI: 10.1080/01431161.2010.519741.
Notti, D., Cina, A., Manzino, A. et al. (2020). Low-cost GNSS solution for continuous monitoring of slope instabilities applied to Madonna Del Sasso Sanctuary (NW Italy). Sensors, 20(1), 289. DOI: 10.3390/s20010289.
Pawluszek-Filipiak, K. and Borkowski, A. (2020). Integration of DInSAR and SBAS techniques to determine mining-related deformations using Sentinel-1 data: The case study of rydultowy mine in Poland. Remote Sens., 12, 242. DOI: 10.3390/rs12020242.
Pawluszek-Filipiak, K. and Borkowski, A. (2021). Monitoring mining-induced subsidence by integrating differential radar interferometry and persistent scatterer techniques. Eur. J. Remote Sens., 54, 18–30. DOI: 10.1080/22797254.2020.1759455.
Perski, Z. (1998). Applicability of Ers-1 and Ers-2 Insar for Land Subsidence Monitoring in the Silesian Coal Mining Region, Poland. Int. Arch. Photogr. Remote Sens., 32, 555–558.
Przylucka, M., Herrera, G., Graniczny, M. et al. (2015). Combination of conventional and advanced DIn- SAR to monitor very fast mining subsidence with TerraSAR-X data: Bytom City (Poland). Remote Sens., 7, 5300–5328. DOI: 10.3390/rs70505300.
Ramdani, F., Amanda, F.F. and Tsuchiya, N. (2019). Displacement Linear Surface Rupture of the 2018 Palu Earthquake Detected by Sentinel-1 Sar Interferometry and Very High-Resolution Imageries of Planetscope Data. In: International Geoscience and Remote Sensing Symposium (IGARSS). Institute of Electrical and Electronics Engineers Inc., pp. 9292–9294.
Razi, P., Tetuko Sri Sumantyo, J., Perissin, D. et al. (2019). Ground deformation measurement of Sinabung vulcano eruption using DInSAR technique. J. Phys. Conf. Ser., 12008. DOI: 10.1088/1742- 6596/1185/1/012008.
Tang, W., Zhan, W., Jin, B. et al. (2021). Spatial Variability of Relative Sea-Level Rise in Tianjin, China: Insight from InSAR, GPS, and Tide-Gauge Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 2621–2633. DOI: 10.1109/JSTARS.2021.3054395.
Wang, Q., Yu, W., Xu, B. et al. (2019). Assessing the use of gacos products for sbas-insar deformation monitoring: A case in southern california. Sensors, 19, 3894. DOI: 10.3390/s19183894.
Wielgocka, N., Hadas, T., Kaczmarek, A. et al. (2021). Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying. Sensors, 21(6), 1956. DOI: 10.3390/s21061956.
Winsvold, S.H., Kääb, A., Nuth, C. et al. (2018). Using SAR satellite data time series for regional glacier mapping. Cryosphere, 12, 867–890. DOI: 10.5194/tc-12-867-2018.
Xiao, R., Yu, C., Li, Z. et al. (2021). Statistical assessment metrics for InSAR atmospheric correction: Applications to generic atmospheric correction online service for InSAR (GACOS) in Eastern China. Int. J. Appl. Earth Obs. Geoinf., 96, 102289. DOI: 10.1016/j.jag.2020.102289.
Yu, C., Penna, N.T. and Li, Z. (2017). Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res., 122, 2008–2025. DOI: 10.1002/2016JD025753.
Yu, C., Li, Z., Penna, N. et al. (2018a). Generic Atmospheric Correction Online Service for InSAR (GACOS).
Yu, C., Li, Z., Penna, N.T. (2018b). Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ., 204, 109–121. DOI: 10.1016/j.rse.2017.10.038.
Yu, C., Li, Z., Penna, N.T. et al. (2018c). Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res. Solid Earth, 123, 9202–9222. DOI: 10.1029/2017JB015305.
Yu, C., Li, Z., Penna, N.T. (2020). Triggered afterslip on the southern Hikurangi subduction interface following the 2016 Kaik¯oura earthquake from InSAR time series with atmospheric corrections. Remote Sens. Environ., 251, 112097. DOI: 10.1016/j.rse.2020.112097.
Zebker, H.A., Rosen, P.A. and Hensley, S. (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res. Solid Earth, 102, 7547–7563. DOI: 10.1029/96jb03804.
Zebker, H. (2021). Accuracy of a model-free algorithm for temporal insar tropospheric correction. Remote Sens., 13, 1–9. DOI: 10.3390/rs13030409.
Zhou, X., Chang, N.B., Li, S. (2009). Applications of SAR interferometry in earth and environmental science research. Sensors, 9, 1876–1912. DOI: 10.3390/s90301876.
Go to article

Authors and Affiliations

Kamila Pawłuszek-Filipiak
1
ORCID: ORCID
Natalia Wielgocka
1
ORCID: ORCID
Tymon Lewandowski
1
ORCID: ORCID
Damian Tondaś
1
ORCID: ORCID

  1. Wroclaw University of Environmental and Life Science, Wroclaw, Poland

This page uses 'cookies'. Learn more