Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study analyzed the influence of periodic and aperiodic stiffness distribution for the four-element Bernoulli-Euler beam on the first two eigenfrequencies and the dynamic stability of the system. The influence of increasing the ratio of cross-sections of the analyzed elements was also analyzed. Significant differences were found in eigenfrequencies and dynamic stability. Using the variational Hamilton principle, the equation of motion was derived, on the basis of which the values of the eigenfrequencies were determined, and the transformation into the form of the Mathieu equation made it possible to determine the dynamic stability for the analyzed structures.
Go to article

Authors and Affiliations

J. Garus
1
ORCID: ORCID
J. Petrů
2
ORCID: ORCID
W. Sochacki
1
ORCID: ORCID
S. Garus
1
ORCID: ORCID

  1. Czestochowa University of Technology, Department of Mechanics and Machine Design Fundamentals, Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland
  2. VS B-Technical University of Ostrava, Faculty of Mechanical Engineering Department of Machining, Assembly and Engineering Metrology, 70833 Ostrava, Czech Republic

This page uses 'cookies'. Learn more