Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In Eurocode 5, the stiffness equation for bolted steel-wood-steel is stated as a function ofwood density and fastener diameter only. In this research, an experimental study on various configurations of tested bolted steel-wood-steel (SWS) connections has been undertaken to predict the initial stiffness of each connection. In order to validate the Eurocode 5 stiffness equation, tests on 50 timber specimens (40 glued laminated timbers and 10 laminated veneer lumbers (LVL)) with steel plates were undertaken. The number of bolts was kept similar and the connector diameter, timber thickness, and wood density were varied. The results obtained in the experimental tests are compared with those obtained from the Eurocode 5 stiffness equation. From the analysis, it is signified that the stiffness equation specified in Eurocode 5 for bolted SWS connections does not adequately predict the initial stiffness. The results from Eurocode 5 stiffness equation are very far from the experimental values. The ratio of stiffness equation to experimental results ranges from 3.48 to 4.20, with the average at 3.77, where the equation overpredicted the experimental stiffness value for the connection. There is a need to consider or incorporated other parameters such as geometric configurations in Eurocode 5 stiffness equation to improve the ratio with the experimental data.
Go to article

Authors and Affiliations

Nur Liza Rahim
1 2
ORCID: ORCID
Gary Raftery
3
ORCID: ORCID
Pierre Quenneville
3
ORCID: ORCID
Doh Shu Ing
4
ORCID: ORCID
Marcin Nabiałek
5
ORCID: ORCID
Ramadhansyah Putra Jaya
4 6
ORCID: ORCID
Norlia Mohamad Ibrahim
1 7
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
8 6
ORCID: ORCID
Agata Śliwa
9
ORCID: ORCID

  1. University Malaysia Perlis, Faculty of Civil Engineering Technology, 02600 Arau Perlis, Malaysia
  2. 2Sustainable Environment Research Group (SERG), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), University Malaysia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  3. University of Auckland, Faculty of Civil Engineering, Department of Civil and Environmental Engineering, Auckland, New Zealand
  4. Department of Civil Engineering, College of Engineering, University Malaysia Pahang, 26300 Gambang Kuantan, Pahang Malaysia
  5. Czestochowa University of Technology, Czestochowa, Poland
  6. Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), University Malaysia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  7. Sustainable Environment Research Group (SERG), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), University Malaysia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  8. University Malaysia Perlis, Faculty of Chemical Engineering Technology, 02600 Arau Perlis, Malaysia
  9. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian University of Technology, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more